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Diagnosing Teachers’ Understandings of Rational Numbers:
Building a Multidimensional Test Within the Diagnostic
Classification Framework

Laine Bradshaw, Andrew Izsák, Jonathan Templin, and Erik Jacobson,
The University of Georgia

We report a multidimensional test that examines middle grades teachers’ understanding of fraction
arithmetic, especially multiplication and division. The test is based on four attributes identified
through an analysis of the extensive mathematics education research literature on teachers’ and
students’ reasoning in this content area. We administered the test to a national sample of 990
in-service middle grades teachers and analyzed the item responses using the log-linear cognitive
diagnosis model. We report the diagnostic quality of the test at the item level, mastery
classifications for teachers, and attribute relationships. Our results demonstrate that, when a test is
grounded in research on cognition and is designed to be multidimensional from the onset, it is
possible to use diagnostic classification models to detect distinct patterns of attribute mastery.
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M ultiplicative reasoning has been one primary focus of
mathematics education research for several decades

(e.g., Greer, 1992; Lamon, 2007) because it is critical for a
wide range of topics and poses perennial difficulties for stu-
dents and, in many cases, teachers. Multiplicative reasoning
is fundamental to whole number multiplication and division,
fractions, ratios and proportions, linear functions, and more
(e.g., Vergnaud, 1983). Students’ and teachers’ difficulties
with such topics have been widely documented (e.g., Ball,
Lubienski, & Mewborn, 2001; Greer, 1992; Lamon, 2007; Ma,
1999). Example difficulties relate to conceptual meanings for
the operations of multiplication and division, conceptual un-
derpinnings for computations such as multidigit multiplica-
tion and division by fractions, and multiplicative relationships
as models of situations presented through word problems or
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other formats. This body of research has demonstrated that
multiplicative reasoning is complex and multifaceted.

Identifying knowledge that teachers need to effectively
teach students has been a second primary focus of mathemat-
ics education research (e.g., Ball et al., 2001; Ball, Thames,
& Phelps, 2008; Hill, Sleep, Lewis, & Ball, 2007). Establishing
links between teachers’ knowledge and students’ achieve-
ment eluded researchers for decades, but a few recent stud-
ies (e.g., Baumert et al., 2010; Hill, Rowan, & Ball, 2005)
have done so using measures inspired by the knowledge cate-
gories Shulman (1986) discussed as necessary for teaching—
including subject matter knowledge, pedagogical knowledge,
and pedagogical content knowledge. These measures have
relied on unidimensional item response theory (IRT) models
and have not attempted to model multifaceted complexity
like that characteristic of multiplicative reasoning.

This study is inspired by the recent advances in conceptu-
alizing and measuring teachers’ knowledge mentioned above.
In particular, we investigated the possibility of developing
a test of teachers’ multiplicative reasoning that would de-
tect meaningful differences and that could be used to give
constructive feedback to teachers about which components
of this complex domain they do and do not understand. We
narrowed our focus to reasoning about fraction arithmetic
because the research literature suggested several distinct yet
related dimensions in this subdomain of multiplicative rea-
soning. Given our purpose to provide pointed feedback with
respect to multiple facets of this subdomain, we developed
the test in anticipation of using diagnostic classification mod-
els (DCMs; e.g., Rupp, Templin, & Henson, 2010). In so doing,
we addressed a main question for the field of psychometrics:
Is it possible to construct tests that reliably measure multi-
ple, distinct dimensions and that are practical to administer
within realistic testing conditions?
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DCMs are a family of psychometric models that hold
promise for supporting the construction of practical, multidi-
mensional tests. Most research on DCMs to date has focused
on psychometric issues fundamental to model development,
including unifying model specification with generalized lin-
ear parameterizations and testing estimation properties of
the models in simulated settings. These theoretical advances
are necessary precursors to practical uses of DCMs, but a
successful demonstration that a test can be designed to mea-
sure a multidimensional construct with DCMs has yet to be
reported.

This study takes this next step, reporting the process by
which we developed a multidimensional test assessing frac-
tion arithmetic and the results of modeling data from a
large-scale administration using a DCM. An interdisciplinary
team of psychometricians and mathematics education re-
searchers developed the test as part of the National Science
Foundation–funded Diagnosing Teachers’ Multiplicative Rea-
soning (DTMR) project. The test examines knowledge that
middle grades mathematics teachers have of fractions con-
tent and emphasizes using problem situations (e.g., word
problems) and drawn models (e.g., number lines and rect-
angular areas). These emphases are consistent with recent
U.S. standards for K-12 mathematics curricula (e.g., Com-
mon Core State Standards [CCSS] Initiative, 2010; National
Council of Teachers of Mathematics [NCTM], 2000), and thus
are consistent with knowledge that teachers need for their
practice.

First, we provide background on fractions research and
mathematics curricula. Second, we introduce DCMs and dis-
cuss previous analyses that have been conducted with this
newer class of psychometric models. Third, we explain how
we developed the test that was well aligned with the DCM
framework. Fourth, we describe a general DCM, the log-linear
cognitive diagnosis model (LCDM; Henson, Templin, & Willse,
2009), that we used to model the test data. Finally, we pro-
vide results demonstrating that the test measured a multi-
dimensional construct and that estimation was feasible with
a practical test length. The concluding discussion addresses
implications for psychometrics and mathematics education.

Background on Fractions Research and Mathematics
Curricula

The mathematical content of the DTMR Fractions test is in-
formed by a substantial research base on students’ and teach-
ers’ reasoning about fractions and by current curriculum stan-
dards. There has been increasing recognition over the past
several decades that encouraging students to memorize steps
in numerical procedures as a means to learn mathematics
leads to numerous problems: Because such instruction does
not support conceptual understanding of arithmetic, students
are prone to make errors because they forget steps or make
inappropriate generalizations (e.g., National Research Coun-
cil, 2001). As one example, students who have been taught
to divide fractions by remembering to “invert and multiply”
are often confused about whether they should invert the divi-
sor or the dividend—for instance, a child may have to guess
whether to solve 2

3 ÷ 3
4 by computing 3

2 × 3
4 or 2

3 × 4
3 .

In response, there has been a sustained effort to reform
how children are taught mathematics in the United States.
Both the NCTM (2000) standards and the CCSS (2010) con-
sistently emphasize the importance of (a) having students

solve problems in which numbers are embedded in problem
situations as measures of quantities (e.g., lengths and areas)
and (b) using drawn models (e.g., number lines and rectan-
gular areas) as the basis for building meaning for arithmetic
operations and general numerical methods for computation.
Because there are many school teachers who were only taught
procedural steps, such as “invert and multiply” for fraction di-
vision, there is urgent need to help preservice and in-service
teachers develop understandings necessary for using prob-
lem situations, drawn models, and meaning for operations
to teach students why computation methods like “invert and
multiply” make sense. In fact, numerous studies have reported
teachers’ conceptual difficulties with different aspects of this
mathematical domain (e.g., Ball, 1990; Borko et al., 1992;
Izsák, 2008; Izsák, Jacobson, de Araujo, & Orrill, 2012; Ma,
1999; Sowder, Philipp, Armstrong, & Schappelle, 1998; Tirosh
& Graeber, 1990). Before discussing the test-construction
process, we first introduce DCMs to overview the framework
that supported and guided our diagnostic test construction.

Background and Previous Uses of DCMs
DCMs, Rule Space Methodology (RSM; e.g., Tatsuoka, 1990)
and the Attribute Hierarchy Method (Leighton, Gierl, &
Hunka, 2004) aim to provide feedback with respect to multi-
ple attributes, and models within these frameworks have all
been referred to as cognitive diagnosis models (Leighton &
Gierl, 2007). To distinguish latent class–based models from
others that fall under the cognitive diagnosis umbrella, we
use the term diagnostic classification model.

DCMs conceptualize latent constructs as sets of related
categorical traits and diagnose mastery states with respect
to those traits. Consistent with DCM literature, we will use
the term attribute to refer to the categorical latent traits that
tests are developed to measure. For educational tests, most
DCMs assume dichotomous attributes where examinees are
either a master or a nonmaster of each. The unique patterns
of attribute mastery and nonmastery define the latent classes
or groups by which DCMs categorize examinees. Because at-
tributes, and therefore classes, are defined prior to analyses,
DCMs are confirmatory latent class models where examinee
classifications are determined by the item responses, the sta-
tistical properties of the items, and the population-level base
rates of examinees that are masters of each attribute.

Due to the confirmatory nature of DCMs, designing a diag-
nostic test first requires delineating a set of attributes sug-
gested by cognitive research to be critical for a given domain.
Subsequently, each test item is constructed to measure one
or more of the attributes. Because an item can measure more
than one attribute, multidimensionality can exist within as
well as between items. The item–attribute alignment is ex-
pressed in a Q-matrix where an entry of “1” indicates that an
item measures an attribute and an entry of “0” indicates that
an item does not. DCM classification accuracy hinges on the
correct alignment of items with attributes, as Q-matrix mis-
specifications result in more frequent misclassification (Rupp
& Templin, 2008).

Instead of establishing item–attribute alignment during
the test construction process, most DCM research to this
point has relied on retrofitting DCMs to existing test data.
Model–data misfit is expected when multidimensional DCMs
are fit to data from tests developed to assess one dimension.
In particular, DCMs have been retrofitted to tests designed
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for Item Response Theory (IRT)—including the TOEFL (von
Davier, 2005), TIMMS test (Lee, Park, & Taylon, 2011), NAEP
(Xu & von Davier, 2008), and large-scale state tests (e.g.,
Cheng, 2009)—and to tests designed for RSM, including the
Examination for Certification for Proficiency in English (e.g.,
Templin & Bradshaw, in press) and Tatsuoka’s (1990) frac-
tion subtraction test.

Due to model–data misfit, retrofitting unidimensional data
is not ideal for investigating the promise of DCMs for
constructing multidimensional tests. The purpose of many
retrofitted analyses has been to illustrate methodological ad-
vances in DCMs. Rarely has emphasis been placed on inter-
preting or scrutinizing results with respect to cognitive or
learning theories in the tested domain or giving valid feed-
back to examinees (see Jang, 2009, for exception). For ex-
ample, although the Tatsuoka fraction subtraction data have
been used in over 10 methodological DCM publications in the
last 8 years, DeCarlo (2011) demonstrated that a flaw in the
Q-matrix leads to misclassification, an incompatibility that
has yet to be resolved. When results of DCM analyses are
thoroughly examined, the conclusion is often that the items
do not fit the model well (e.g., Kunina-Habenicht, Rupp, &
Wilhelm, 2009) or that a unidimensional model best repre-
sents the data (e.g., Lee, de la Torre, & Park, 2012; Templin
& Bradshaw, in press).

Despite limited demonstrations of what can be achieved
with DCMs, these models are attractive because they present
a methodological solution for a common scenario in educa-
tional testing: Multidimensional feedback is desired, yet test-
ing time is limited. In comparison to multidimensional IRT
(MIRT) models, DCMs need far fewer items per dimension
to yield reliable examinee estimates (Templin & Bradshaw,
2013). That MIRT models require more items than can be
administered feasibly may be one explanation for why uni-
dimensional tests remain predominant in education despite
federal requirements (NCLB, 2002) and teachers’ needs (Huff
& Goodman, 2007) for more nuanced feedback.

DCMs can be viewed as alternatives to MIRT models that
trade categorical for continuous latent variables in exchange
for multidimensional feedback within common testing condi-
tions. Although many researchers have questioned whether
DCMs are practical for real-world testing programs be-
cause proof-of-concept studies have not demonstrated strong
model–data fit, these studies have significant limitations be-
cause the test data were not designed to be multidimensional.
This study investigates what might be possible in DCM appli-
cations when using an extensive research base in a targeted
content area to build a test from the ground up to diagnose
multiple attributes.

Construction of the DTMR Fractions Test
Attribute and Item Construction and Validation

The DTMR Fractions test was developed by a collaborative
team that included mathematics education researchers with
expertise in the correct and incorrect ways that students
and teachers reason about fractions. We designed our test
for teachers of Grades 5–7, the grades during which fraction
arithmetic, especially multiplication and division, is typically
taught. We assumed teachers know how to compute numeri-
cally with fractions and defined our target construct, instead,
as content knowledge necessary for using problem situations

and drawn models of quantities as the basis for developing
general numeric methods for fraction arithmetic.

We began our test development by synthesizing the rel-
evant literature to identify a set of core competencies that
could serve as an initial set of attributes or dimensions upon
which to base the test. The substantial body of research on
teachers’ and students’ capacities to reason about fractions
in terms of quantities provided a good opportunity for identi-
fying such attributes. A main challenge was to identify a set of
attributes that would span the critical competencies teach-
ers need and then operationalize that set as distinct traits of
which teachers exhibited clear mastery or nonmastery. Be-
cause the attributes we sought to diagnose are typically used
in various combinations to solve problems, we expected them
to be distinct, but related traits.

Once we identified the initial set of attributes, we com-
pleted three cycles of writing items, interviewing teachers
to determine how they interpreted and answered the items,
and revising the attributes and items in light of the inter-
view data. Each cycle led to improved alignment among the
attributes, items, and teachers’ reasoning. Ensuring that we
had written enough items to elicit different features of the
target attributes helped establish that our test adequately
covered the breadth of each attribute, which was important
for establishing construct representation (Messick, 1989).
Verifying item–attribute alignment through our iterative test
construction process provided evidence that items were mea-
suring attributes we intended them to measure, which was
important for establishing the content validity (Boorsboom
& Mellenberg, 2007) of our test. Because DCMs readily ac-
commodate items measuring multiple attributes, we did not
restrict items to measure one attribute. Rather, we allowed
our understanding of the mathematical content to determine
the number of attributes an item elicited.

During the first cycle of item development, project mem-
bers drafted items intended to measure one or more of the
initial attributes identified through the synthesis of the liter-
ature. Once we had drafted enough items to create short-test
forms, we recruited 22 in-service teachers from several school
districts in two states, one in the western and one in the east-
ern United States. The teachers answered the items and then
participated in semistructured (Bernard, 1994, Chapter 10)
videotaped interviews during which they explained how they
interpreted and answered the items. Video was important be-
cause many of the items included drawings of numbers lines,
rectangular areas, and other representations, and teachers
often pointed to or marked on these when explaining their
thinking. We used the teachers’ responses during the inter-
views to determine accuracy of item–attribute alignment.
That is, we looked to see if teachers’ explanations indicated
that they answered items correctly by using the intended at-
tributes appropriately (true positives), answered items cor-
rectly without demonstrating the intended attributes (false
positives), answered items incorrectly and did not demon-
strate the intended attributes (true negatives), answered
items incorrectly but did demonstrate the intended attributes
(false negatives).

Data from the first cycle of item development revealed
several shortcomings both with the attributes and with the
initial items. In one case, we found that we could not use
teachers’ written responses to reliably discriminate between
two related attributes because the written responses did
not capture the nuanced differences in teachers’ reason-
ing with respect to these attributes that we observed during
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the interviews. In this case, we combined the two attributes
into a single attribute. In other cases, teachers found ways
to answer items correctly that circumvented the intended
attributes—for instance, by setting up and solving algebra
equations.

We responded to these shortcomings in two ways. First,
we revised items that could be repaired and dropped items
that could not be repaired. Second, we planned a new round
of semistructured interviews during which we had teachers
solve a series of constructed response tasks to help us better
understand how to write items that would distinguish teach-
ers who were masters and nonmasters of our attributes. We
conducted these videotaped interviews with a new sample of
14 teachers and used the data to inform a further round of
item writing. To investigate the validity of our newly developed
items, we conducted a third and final round of videotaped in-
terviews with another sample of 25 teachers. We made small
refinements to some items as we progressed through these
interviews. When the interviews were complete, we analyzed
the data item-by-item for true and false positives and nega-
tives as described above. Nearly all of the items performed
well, and we used those well-performing items to construct
the final DTMR Fractions form.

Final Form of DTMR Fractions Test

The final DTMR Fractions test was based on four attributes
and included 22 stems with a total of 29 individual items,
20 multiple choice and 9 constructed response. The DTMR
attributes emphasize components needed to reason about
fraction arithmetic in terms of quantities, such as lengths
and areas. These contrast with attributes used in previous
applications of DCMs that have emphasized either procedu-
ral steps in numeric computations (e.g, Kunina-Habenicht
et al., 2009; Tatsuoka, 1990) or entire branches of mathe-
matics such as geometry and algebra (e.g., Lee et al., 2012).
Mathematics education researchers perceive significant dif-
ferences between procedural steps, like finding a common
denominator or subtracting numerators, and the attributes
described below. The former can be accomplished by memo-
rizing and executing steps in a rote manner, while the latter
focus on making sense of the conceptual underpinnings for
fraction arithmetic.

The first attribute, Referent Units (RUs; Attribute 1; α1)
has to do with making different choices for the whole to
which fractions refer. The ability to identify appropriate RUs
is critical when numbers are embedded in problem situations.
To illustrate, one interpretation of the division statement
2
3 ÷ 3

4 = 8
9 is to ask how many 3

4 ths are in 2
3 . The answer, 8

9 ,
is 8

9 ths of 3
4 ths, not 8

9 ths of the whole.
The Partitioning and Iterating attribute (PI; Attribute 2;

α2) combines partitioning a quantity into equal sized pieces
and concatenating unit fractions to create larger fractions.
Proficiency in partitioning depends on knowledge of whole-
number factors and multiples to partition in stages—for in-
stance, one might use the fact that 3 × 5 = 15 to anticipate
that subdividing a whole into thirds and then subdividing each
third into five equal-sized pieces would create fifteenths. In
the case of fraction arithmetic, one has to partition based on
common multiples of two denominators in some situations
and of two numerators in others. Proficiency in iterating is
based on a particular meaning for fractions. At least in the
United States, the part-whole definition for fractions is used
widely in school curricula. According to this definition A

B is

(a)

(b)

(c)

(d)

(e)

Ms. Roland gave her students the following problem to solve:

Candice has 4/5 of a meter of cloth. She uses 1/8 of a meter for a project. 
How much cloth does she have left after the project?

She had students use the number line so that they could draw the lengths. Which of the 
following diagrams shows the solution? Assume all intervals are subdivided equally. 

FIGURE 1. An item that measures referent unit and partitioning and
iterating using common multiples of denominators.

interpreted to mean a subset of size A taken from a set of
size B . As an example, one might illustrate the meaning of
3
4 by saying “three of four cookies are chocolate chip.” One
problem with this definition is that it is hard to interpret
improper fractions: How could you have “five of four cook-
ies?” Iterating unit fractions supports an alternative to the
part-whole definition in which A

B means A copies of the unit
fraction one Bth. Using this interpretation, one can interpret 3

8

as 3 one-eighths and 9
8 as 9 one-eighths. This is the definition

of fraction adopted by the CCSS (2010, p. 24). Partitioning
and iterating are a single attribute because they go hand in
hand in many problem-solving situations. Initially, we treated
partitioning and iterating as two separate attributes, but in
interviews we observed that teachers rarely had partitioning
facilities without iterating facilities, and vice versa. Prelimi-
nary DCM analyses confirmed that these attributes functioned
as a single attribute, so we combined them.

The Appropriateness attribute (APP; Attribute 3; α3) has to
do with identifying an appropriate operation or mathematical
expression for a given problem situation. A master of APP can
identify word problems that call for multiplication, that call
for division, and so on. For example, when teachers are asked
to write a word problem that illustrates dividing 1 3

4 by 1
2 , many

write problems that require multiplying by 1
2 (e.g., Ball, 1990;

Ma, 1999).
Finally, the Multiplicative Comparison attribute (MC; At-

tribute 4; α4) has to do with forming comparisons by asking
“How many times as great is one value than another?” or
“What portion or fraction of one value is another?” Teachers
and students form MC with whole numbers more easily than
with fractions: Thinking that 12 is 3 times as much as 4 is
easier than thinking that 10 is 5/2 times as much as 4.

Sample Item to Assess Reasoning with Fractions

Figure 1 shows an item similar to Item 18 on the DTMR
Fractions test. The correct response is (b). A teacher who
chose (a) or (c) would likely be unclear about the RU for 1/8:
(a) shows 4/5 minus 1/8 of 4/5 (the mistake is taking the RU
for 1/8 to be 4/5), and (c) shows 4/5 minus 1/8 of 1/5 (the
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mistake is taking the RU for 1/8 to be 1/5). A teacher who
reexpressed 1/8 as 5/40 would still have to choose from (b),
(d), and (e) because they all show 5 parts removed from an
interval of length 1/5. Choice (d) shows 5/5 minus 1/8 of 5/5
(the mistake is removing 1/8 of 5/5 from the whole segment,
not from 4/5 of the whole segment). To discriminate between
(b) and (e), a teacher could subdivide the length of the entire
segment using the partition of the fourth interval as a guide.
In case of (e), the result is 5 groups of 6 pieces that create
30ths, an incorrect partition. In case of (b), the result is 5
groups of 8 pieces that create 40ths, a correct partition. Thus,
choice (b) is consistent with identifying the correct RU for
1/8 and partitioning intervals appropriately.

Methods
Psychometric Model: The LCDM

We designed the DTMR Fractions test from the perspective
of a general DCM, the log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009). The LCDM maps item responses
onto latent attributes using a generalized linear model frame-
work. As such, the LCDM is similar to an analysis of variance
(ANOVA) model for binary data where attributes measured
by an item represent fully crossed and reference-coded de-
sign factors. Consequently, the item parameters of the LCDM
reflect the ANOVA-style main effects for each attribute and,
for items measuring more than one attribute, interactions
between attributes. Parameter values reflect the degree to
which mastering additional attributes increases the probabil-
ity of a correct response.

To demonstrate how the LCDM relates item response prob-
abilities to attribute mastery status, consider an item like
the one presented in Figure 1 that measures two attributes:
Attribute 1 (RU, αe1) and Attribute 2 (PI, αe2). The LCDM
provides the log-odds of a correct response as:

ln
(

P (X ei = 1|αe )
P (X ei = 0|αe )

)
= λi,0 + λi,1(1)(αe1) + λi,1(2)(αe2)

+ λi,2(1∗2)(αe1αe2). (1)

The parameter λi,0 is the intercept and represents the
predicted log-odds of a correct response for examinees in
the reference group—examinees who have not mastered RU
(Attribute 1) or PI (Attribute 2). The parameter λi,1(1) is
the simple main effect for mastery of RU, representing the in-
crease in the log-odds of a correct response for examinees who
have mastered RU (αe1 = 1) but not PI (αe2 = 0). Similarly,
the parameter λi,1(2) is the simple main effect for mastery
of PI representing the increase in the log-odds of a correct
response for examinees who have mastered PI (αe2 = 1) but
not RU (αe1 = 0). Finally, the parameter λi,2(1∗2) is the in-
teraction effect for mastery of RU and PI that represents the
change in log-odds for examinees who have mastered both
attributes (αe1 = 1 and αe2 = 1).

To make these interpretations more concrete, consider
if an item had estimated model parameters of λi,0 = −1.5,
λi,1(1) = 1, λi,1(2) = 1.25, and λi,2,(1∗2) = 0.5. The log-odds
of a correct response for examinees who have mastered nei-
ther RU nor PI is –1.5, which corresponds to a probability of a
correct response of .18 that can be calculated by the inverse
log-odds function from Equation 1. For examinees who have
mastered RU but not PI, the log-odds of answering the item
correctly is –1.5 + 1.0 = –0.5, corresponding to a probability

of a correct response of .38. To quantify the strength of asso-
ciation between attributes and an item in DCMs, odds ratios
can be used to indicate the effect sizes for item parameters.
The conventional metrics for evaluating the effect size of an
odds ratio apply (see Chinn, 2000, where 1.44 < small < 2.47,
2.47 < medium < 4.25, and large > 4.25). For example, the
effect size for the simple main effect of RU was 2.72, indicat-
ing a moderately sized effect. This odds-ratio is notated by
θi,α1|α2=0 and indicates that, conditional on examinees being
nonmasters of PI (i.e., αe2 = 0), the odds of RU masters (i.e.,
αe1 = 1) answering the item correctly are 2.72 times the odds
for RU nonmasters. The interaction term is interpreted simi-
larly by conditioning on values of the attributes. For example,
for masters of PI, the odds of correct response for exami-
nees additionally mastering RU are 4.48 times the odds of a
correct response for examinees who have only mastered PI.
This strong odds ratio provides evidence that the interaction
term is needed as both attributes are necessary to have a high
probability of answering the item correctly.

Our test construction process focused on developing strong
conjectures about item–attribute alignment but not about
ways that the attributes would interact at the item level.
We planned to inspect these interactions empirically using
the LCDM. The LCDM can model attribute effects on each
item response in a compensatory or noncompensatory man-
ner, depending on the size and direction of the LCDM item
parameters. Attributes are compensatory when an examinee
can answer an item correctly using a strict subset of the mea-
sured attributes. In this case, the lack of mastery of one or
more attributes is compensated for by mastery of other at-
tributes. Attributes are noncompensatory when an examinee
can only answer an item correctly using all attributes mea-
sured by the item. Other DCMs differ from the LCDM in that
they impose the same compensatory or noncompensatory con-
straints across all items on the test; the LCDM relaxes these
constraints and provides a flexible framework to empirically
test item–attribute relationships at the item level.

Structural Portion of the LCDM

The previous section discussed the measurement portion of
the LCDM, or how the LCDM parameterization relates at-
tributes to items. The structural portion of the LCDM param-
eterizes how attributes are related to each other. We used a
structural model that parameterized the base rate probabil-
ities of mastery for each of the 16 unique attribute mastery
patterns with a log-linear structure (see Chapter 8 of Rupp
et al., 2010) and then, to help describe the bivariate rela-
tionship between attributes, derived tetrachoric correlations
among pairs of attributes from these probabilities. The base
rate probabilities of attribute profile mastery are mapped
onto a series of linear model parameters including simple
main effects for all attributes and all possible interactions of
attributes. For these structural models, nonsignificant higher
order interaction terms negligibly influence attribute rela-
tionships and do not need to be estimated (Rupp et al., 2010;
Xu & von Davier, 2008).

Sample and Test Characteristics
We collected a national sample of 990 in-service middle
grades mathematics teachers’ responses to the DTMR Frac-
tions test. Descriptive statistics for our sample were in rough
accord with representative national samples of middle grades
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teachers in other studies (e.g., Hill, 2007). Teachers reported
an average of 12 years of teaching experience, were mostly
White (75%, n = 743), and were mostly women (81.3%,
n = 805). Nearly all (93%, n = 922) had experience teaching
Grades 6–8 mathematics, and 885 (89%) were fully creden-
tialed in mathematics.

We scored the teachers’ responses to the DTMR Fractions
test items as correct or incorrect. Each multiple choice item
had one correct answer, and our team of mathematics ed-
ucation researchers scored the nine constructed response
items. We removed Item 20 from the analyses due to difficul-
ties in interpreting responses, leaving a total of 28 items on
the test. Twenty items measured a single attribute and eight
items measured two attributes. The test measured the four
attributes, RU, PI, APP, and MC, with 15, 10, 5 and 5 items,
respectively.

Results
Using a conjecture-based approach, we estimated the data us-
ing the LCDM and Mplus 6.11 (Muthén & Muthén, 1998–2013;
Rupp et al., 2010). Our approach that we describe as
conjecture-based began with specifying the LCDM in accord
with our conjectures of item–attribute alignment (i.e., our Q-
matrix). Then, we utilized the LCDM general parameteriza-
tion which allows for all possible main effects and interactions
among attributes in the structural and measurement compo-
nents of the model. As in a general linear model framework,
we empirically evaluated the significance of these parameters
and removed those that were statistically nonsignificant.

Utilizing the LCDM as a tool for gathering empirical evi-
dence to evaluate theory-based conjectures is similar to the
approach used with confirmatory factor analysis (CFA): Cur-
rent theory delineates the construct and hypothesizes rela-
tionships among the latent and observed variables, and modi-
fication indices provide empirical evidence for refining those
hypotheses (e.g., Jöreskog, 1993). As in CFA, our procedure
was not completely confirmatory because we were open to
modifications based on empirical evidence that might refute
our theory-based conjectures. In an ideal case, researchers
combine substantive and statistical evidence in a cyclic fash-
ion to refine their understandings of constructs and tests
without over-relying on either evidence source. We view this
study as an initial cycle to hone our test and theory.

We will describe first our process of model-fitting with the
LCDM as it is a more general and less familiar approach
than many DCMs appearing in the literature that are maxi-
mally constrained versions of the LCDM (i.e., deterministic
inputs noisy and gate [DINA] model, e.g., Haertel, 1989; de-
terministic inputs noisy or gate [DINO] model, Templin &
Henson, 2006). We then turn to results for our best-fitting
model. These results focus on describing the diagnostic qual-
ity of the test items, mastery classifications for teachers, and
attribute relationships.

Model Specifications

Structural model. We used a log-linear parameterization
for the structural model to freely estimate the hypothesized
correlations between attributes. The final structural model
specification we selected was the 2-way structural model,
which constrained all 3- and 4-way interactions to equal zero.
Other specifications including higher order interaction terms
did not converge. The 2-way structural model converged ap-

propriately and all 2-way interaction terms and main effects
were significantly greater than zero according to the Wald
test ( p < .05).

Item parameter significance. We can use item parameters
in the LCDM to statistically test whether or not each item
measures the intended attributes: If the main effects and
relevant interactions for an attribute are both near 0, then
empirically the item does not measure the attribute. Thus,
beginning with a general modeling strategy analogous to that
used in a fully crossed factorial ANOVA model, our first analy-
sis included all possible interaction effects among attributes
on each item. Initial results indicated that the interaction
effect for RU (α1) and MC (α3) on Item 5 was not significant
(Wald Z = −.017, p = .987). Removing this effect yielded
a more parsimonious model that better represented the data,
as shown by a nested model likelihood ratio test yielding
χ (1) = 1.81, p = .179. We continued to remove nonsignif-
icant interaction effects and test for improved model speci-
fications in this way, which resulted in removing 8 of the 10
interaction terms. We continued to estimate interactions for
Items 14 and 17.

We examined main effects next. Main effects cannot be
evaluated solely according to the Wald test statistic or like-
lihood ratio test because they are constrained to be greater
than zero. This constraint results in a boundary violation and
yields an overly conservative test (see Templin & Bradshaw,
in press). Therefore, we trusted the findings of nonsignificant
main effects and reported effect sizes for the remaining main
effects. Results indicated that nine main effects should be re-
moved. Five of these main effects were for the MC attribute.
Of the four attributes, item–attribute alignment for this at-
tribute was the hardest to infer when we were developing
our items. To be conservative, we included the attribute as
a potential main effect for all items that could be answered
using MC with the expectation that statistical analysis might
lead to refinements in the Q-matrix. Both main effects for
Item 14 were nonsignificant, resulting in Item 14 being the
one item on the test that behaved like a DINA model item
with completely noncompensatory attributes. The main effect
for Item 19 was removed, which led us to remove the item
from the test because it did not offer information to classify
teachers. The item was expected to be very difficult, even for
masters of the APP attribute, because it presents a fraction
division situation with which many teachers are unfamiliar.
That 92.3% of teachers missed this item meant that many
masters of the attribute still missed the item.

Final LCDM specification. After removing nonsignificant
main effects, we estimated our final model which measured
four attributes with 27 items, as shown in Figure 2. This figure
depicts the LCDM for the DTMR Fractions test using a path
diagram similar to those found in CFA. The unidirectional
arrows show the Q-matrix structure, the bisected shapes indi-
cate that the attributes and item responses are dichotomous,
and the bidirectional arrows indicate tetrachoric correlations
between attributes. The following sections provide results for
this model.

Multidimensionality of the DTMR Fractions Test

Tetrachoric correlations among the attributes ranged from
.626 to .781, as shown in Figure 2. These correlations are
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FIGURE 2. Path diagram for DTMR fractions test. Unidirectional arrows indicate the set of binary latent attributes (indicated by bisected
circles) that influences each observed, dichotomous item response. The converging paths indicate significant attribute interactions for the
item. The bidirectional arrows among the attributes indicate the correlations among these latent variables (values provided).

strongly positive, but not near one, providing evidence that
the DTMR Fractions test is able to distinguish targeted com-
ponents of the multidimensional construct. We expected the
attributes to be distinct but related; however, correlations
that were too large would have provided evidence that either
(a) ontologically, the attributes are not distinct traits, or (b)
operationally, the attributes were not separable as distinct
traits by this test. This result would have replicated findings
from previous studies that retrofitted DCMs. We are cautious
about interpreting the range of correlations we report, be-
cause without more tests grounded in cognitive psychology or
learning theory that measure fine-grained components of rea-
soning there is limited research against which to compare.
Research on constructing multidimensional tests in educa-
tion has mainly targeted dimensions that more closely re-
semble Thurstone’s (1947) multiple factors approach, where
dimensions are broadly defined as composite abilities, such
as math or verbal ability (e.g., DiBello, Stout, & Roussos,
1995).

Item Parameter Estimates

The item parameter estimates and standard errors are pro-
vided in Table 1. On average, items had an intercept of –1.38,
meaning roughly 20% of teachers who had not mastered any
of the measured attributes answered the items correctly, pre-
sumably by guessing. Average main effect parameters ranged
from 1.40 to 3.23 for individual attributes and the average
of the two interactions was 1.41. The size of these effects
are relative to the size of the intercept, where generally items
with lower intercepts and higher main effects and interaction
terms are more discriminating between masters and nonmas-
ters of the attribute(s). Because the attributes’ impact on
item responses is lost at the aggregate level, item character-
istic bar charts (ICBCs) for all 27 items are shown in Figures 3
and 4. Analogous to an item characteristic curve in IRT, an
item characteristic bar chart plots the response probabilities

on the vertical axis as a function of attribute mastery on the
horizontal axis. Figure 3 provides the ICBCs for items measur-
ing only one attribute (simple structure items). For example,
the estimated probability of answering Item 1 correctly was
.75 for masters of RU and .25 for nonmasters. Figure 4 pro-
vides ICBCs for items measuring more than one attribute
(complex structure items). For these items, how attributes
interacted at the item level can be examined. For example,
consider Item 18, which was similar to the item provided in
Figure 1. Figure 4 shows that the attributes were partially
compensatory: The probability of a correct response to Item
18 increases from .27 to .52 to .53 to .78 when comparing
examinees who mastered neither attribute, only RU, only PI,
and both attributes, respectively.

Diagnostic Utility of Items

The diagnostic utility of an item can be evaluated with respect
to how discriminating the item is for masters and nonmasters
of the target attribute(s). To quantify the diagnostic utility,
we calculated and evaluated the significance of odds ratios
of correct response comparing masters and nonmasters. For
items measuring one attribute, odds ratios ranged from 1.91
(Item 4) to 126.8 (Item 10a) and were all statistically signifi-
cant, indicating strong effect sizes and corroborating evidence
from our cognitive interviews. The conditional odds ratios for
the eight items that measured two attributes ranged from
1.47(θ̂α4|α2=0 and θ̂α4|α2=1 for Item 13) to 96.83(θ̂i,α4|α1=0 and
θ̂i,α4|α1=0 for Item 10c). All but two of these conditional odds
ratios were statistically significant: The 95% confidence inter-
val was (0.87, 15.60) for θ̂i,α1|α4=0 on Item 10c and (0.95, 2.29)
for θ̂α4|α2=0 on Item 13. For Items 10c and 13, three of the four
effect sizes indicated strong relationships between attributes
and items, indicating these complex structure items also had
strong diagnostic quality to distinguish between some, al-
though not all, profiles.
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Table 1. DTMR Item Parameter Estimates

RU(�1) PI(�2) APP(�3) MC(�4) RU/PI
i �i,0 �i,1(1) �i,1(2) �i,1(3) �i,1(4) �i ,2(1,2)

1 − 1.12 (0.12) 2.24 (0.20)
2 0.59 (0.13) 1.27 (0.22)
3 − 2.07 (0.22) 1.70 (0.24)
4 − 1.19 (0.11) 0.65 (0.19)
5 − 1.67 (0.14) 1.52 (0.20) *
6 − 3.81 (0.47) 2.08 (0.50)
7 − 0.73 (0.09) 1.20 (0.22)
8a − 0.62 (0.25) 4.25 (0.64) *
8b − 0.09 (0.17) 2.16 (0.24)
8c 0.28 (0.13) 0.87 (0.18)
8d − 1.03 (0.17) 1.81 (0.21)
9 − 1.22 (0.10) 0.76 (0.19)
10a − 0.50 (0.18) * 4.84 (0.55)
10b − 4.01 (0.74) 1.32 (0.28) 4.26 (0.73)
10c − 4.89 (0.87) 1.30 (0.26) 4.57 (0.87)
11 − 0.88 (0.01) 1.25 (0.18) *
12 − 1.29 (0.11) 1.89 (0.21)
13 − 0.74 (0.14) 0.45 (0.20) 0.39 (0.21)
14 − 2.14 (0.14) 1.59 (0.21)
15a − 2.48 (0.29) 2.72 (0.26) 1.05 (0.28)
15b − 0.56 (0.18) 2.94 (0.28) *
15c − 0.44 (0.17) 3.04 (0.31) *
16 − 0.86 (0.01) 1.55 (0.23)
17 − 2.08 (0.23) 1.22 (0.27) 1.27 (0.34)
18 − 0.99 (0.14) 1.13 (0.26) 1.10 (0.24)
19 *
21 − 1.50 (0.13) 1.69 (0.19)
22 − 1.25 (0.16) 1.47 (0.28) 1.43 (0.25)
Average − 1.38 (0.21) 1.40 (0.22) 1.86 (0.29) 1.46 (0.21) 3.23 (0.55) 1.41 (0.24)
Med − 1.12 (0.14) 1.55 (0.23) 1.30 (0.27) 1.54 (0.21) 1.52 (0.26) 1.41 (0.24)

Note. Standard errors for parameters are given in parenthesis. Item 20 was removed due to scoring. Asterisks (*) indicates the parameter was
estimated in the initially hypothesized parameterization.

Attribute Classifications

Because the DTMR Fractions test measures four binary at-
tributes, teachers were classified into 24 or 16 possible pat-
terns of attribute mastery or latent classes. The LCDM esti-
mates the probability that each teacher is a member of each
latent class. These estimates were aggregated across exam-
inees and are provided in Figure 5 with the horizontal grey
bars. The most likely attribute profile (25.5% membership)
was the last profile where all four attributes were mastered,
and the second most likely profile (21.2%) was the first, where
none of the four attributes were mastered. Seven of the last
eight classes have very low class membership because RU
(Attribute 1) is only mastered by 31.2% of the sample. The
individual attribute mastery proportion for each attribute is
shown with the vertical bars shaded black in Figure 5. These
results show that the other three attributes are mastered
by 55–63% of teachers, which is consistent with previous
research indicating that a sizeable proportion of teachers
struggle with the content tested by the DTMR Fractions test.

Test Feedback for Teachers

To demonstrate the types of feedback possible from DCMs,
Figure 6 provides the marginal probabilities of attribute mas-
tery for three teachers, referred to as Teachers A, B, C. All
three teachers answered 11 of 27 items correctly, so they
would be viewed as having equal amounts of ability with re-
spect to fractions if a total score or a Rasch IRT model were
used. In contrast, the DCM classifications provide very differ-

ent diagnoses for the three teachers. Teacher A is a master
of APP and MC; Teacher B is a master of PI; and Teacher
C is a master of PI and MC. This feedback could be used to
plan professional development that focused on teachers’ in-
dividual weakness rather than on areas redundant with their
strengths.

Attribute Reliability

Using mastery classifications for teacher feedback requires
the classifications to be both valid and reliable. Item–attribute
validity was discussed previously in the description of the
test development process. To quantify reliability of the at-
tribute classifications, we used the DCM measure of reliability
from Templin and Bradshaw (2013). Classification reliabili-
ties were .928, .916, .888, and .891 for RU, PI, APP and MC,
respectively. As expected, the results show higher reliabili-
ties for attributes measured by more items, as RU and PI were
measured by 15 and 10 items. However, in an absolute sense
reliability was very high even for APP and MC, which were
measured by five items each.

Discussion
Our results demonstrate that by coupling strong understand-
ing of the target construct with careful task development, we
were able to create a multidimensional test and use DCMs
to enable diagnostically useful and reliable interpretations of
teachers’ abilities with fraction arithmetic. In mathematics
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FIGURE 3. Item characteristic bar charts (ICBCs) for simple structure items. Nineteen items on the DTMR Fractions test measured one of
four possible attributes (RU, PI, MC, and APP). For each of these items, the figure provides the ICBC which displays the probability of a
correct response (vertical axis) by the discrete attribute mastery state (horizontal axis). For example, for Item 1 (X1), nonmasters of Referent
Unit have a .25 probability of answering the item correctly and masters have a .75 probability of correct response.

education, this provides information about the components of
multiplicative reasoning with which teachers must be facile
if they are to be skillful with current standards-based mathe-
matics curricula. Although considerable interest has grown in
applying psychometric models to build tests of the mathemat-
ical knowledge teachers need for their practice, the majority
of studies (e.g., Hill, 2007; Hill, Schilling, & Ball, 2004; Sader-
holm, Ronau, Brown, & Collins, 2010; Shechtman, Roschelle,
Haertel, & Knudsen, 2010) have developed tests for use with
unidimensional IRT models, and a few have used mixture-
IRT models (Izsák, Orrill, Cohen, & Brown, 2010; Izsák et al.,
2012). Tests that locate teachers on a unidimensional scale of
ability provide considerably less information about particular
areas of strengths and weakness in a complex content area,
like fractions, than, for example, the information we were

able to report about teachers A, B, and C (Figure 6). Thus,
developing a fractions test along the four dimensions of RU,
PI, APP, and MC constitutes a significant advancement for
mathematics education.

Results from the DCM analyses provide new insights into
teachers’ understandings of fraction arithmetic. First, given
the extant literature, it is not surprising that teachers had
difficulty with the RU items, but it is worth knowing that
the RU attribute had far fewer masters in our sample than
any other attribute. Second, there is literature on students’
capacities for partitioning, but almost nothing is known about
teachers’ capacities. Our result that PI can pose significant
challenges for teachers might surprise some mathematics
education researchers. Third, the low rates of mastery for
these attributes (31%–63%) demonstrate the need for quality
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FIGURE 4. Item characteristic bar charts (ICBC) for complex structure items. Eight items on the DTMR Fractions test measured two of
the four possible attributes [i.e., Referent Unit (RU); Multiplicative Comparisons (MC), Partitioning and Iterating (PI), and Appropriateness
(APP)]. For each of these items, the figure provides the ICBC which displays the probability of a correct response (vertical axis) by the
discrete attribute mastery states (horizontal axis). For example, for Item 10b (X10b), nonmasters of RU and MC have a near zero probability
of a correct response, masters of RU only have a .06 probability, masters of MC only have a .56 probability, and masters of both RU and
MC have a .83 probability of correct response.

teacher education to implement recent curriculum standards.
These results corroborate findings from numerous smaller
scale studies that report teachers’ difficulties with reasoning
about fraction arithmetic in terms of quantities.

Our results also have broader implications for developing
multidimensional tests. First, the study contributes to the
practice of multidimensional test construction for psycho-
metrics by providing a model for DCM analyses that others
in the measurement field could follow. Second, the ability to
design tests that provide statistically sound diagnoses illus-
trates a critical feature of DCMs: These models hold promise
for making multidimensional tests practical because traits
can be measured reliably using relatively few items. We
could not reasonably administer more than 30 items due
to the time it took teachers to respond to our items, yet the
theoretical properties of DCMs provided the ability to mea-
sure multidimensional traits with reliabilities above .85 with
as few as five items for some dimensions. Studies, such as
this one, complement existing simulation-based research on
DCMs and demonstrate the feasibility of DCM methodology
for operational use. As a contrasting example, consider end-
of-grade tests in K-12 education. Depending upon the state,
these high-stakes tests require between 60 and 90 items to
provide an estimate of a general ability for students with a
suitable reliability (e.g., Templin & Bradshaw, in press), so

providing multidimensional scores in this framework is not
feasible.

Third, a main lesson we learned is that identifying work-
able attributes can be a significant empirical problem in its
own right. An initial set of attributes may be hypothesized a
priori but will likely need more development to define a set of
distinct yet related traits that can be used to separate exam-
inees into distinct groups. We emphasize that mathematics
education research has not had identifying attributes as an
explicit goal, and that it took considerable effort to organize
the extant literature around attributes that served as the ba-
sis for our test construction. The extensive research base on
students’ and teachers’ reasoning about fractions provided
a solid foundation from which to construct provisional at-
tributes, but we arrived at our final set through cycles of item
development and refinement. This result echoes the discov-
ery and refinement process in personality psychology where
theories have been proposed, refined, and altered since the
advent of multidimensional exploratory and CFA in the 1930s.
We expect identifying workable attributes to surface again as
a critical challenge in future projects where researchers seek
to develop multidimensional tests that are suitable for DCMs.

We close by identifying several directions for future re-
search with respect to our test and theory refinements. First,
whether there is a hierarchy among the four attributes in
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FIGURE 5. Individual Attribute and Attribute Profile Mastery Proportions. The horizontal bars in the lower portion of the figure represent
the proportions of teachers who are classified with each attribute pattern of mastery, with the pattern indicated on the vertical axis by white
and grey shading according to the four attributes RU, PI, APP, and MC. The vertical bars in the upper portion of the figure represent the
proportion of teachers who have mastered each individual attribute.

FIGURE 6. Example teacher feedback. This figure presents indi-
vidual attribute mastery probabilities for three teachers who each
answered 11 of 27 items correctly.

the DTMR Fractions test is an open question. Although the
distribution of attribute profiles in Figure 5 suggests that
the RU attribute might be dependent on the remaining three
attributes, preliminary tests we conducted did not provide
evidence to support such a hierarchy. A more thorough ex-
amination of attribute hierarchies in this domain is one area
for future research. Second, further empirical work is needed
to provide external validity evidence to support the accu-
racy of the model-based teacher classifications. For example,

we could conduct a study to determine the degree to which
expert-based classifications judged upon interview data anal-
yses match DCM-based classifications. Third, future research
should examine how useful the DTMR Fractions test is in
its intended application, teacher professional development.
Feedback from the DTMR Fractions test provides probabili-
ties that teachers are or are not masters of each attribute,
and these categorical decisions could inform which aspects
of fractions teachers should focus on during professional de-
velopment. Furthermore, we would like to know the extent
to which a test like the DTMR Fractions test is sensitive to
the growth and change in teachers’ knowledge as a result
of professional development. These topics of future research
are important steps in utilizing data-based efforts to con-
tribute to the ultimate goal of improving teachers’ capacities
to facilitate student learning.

Our results demonstrate how a diagnostic test can be cre-
ated and modeled with a DCM for a critical content area and
that it is possible to diagnose mastery with respect to compo-
nents critical for reasoning about fractions. At the same time,
they raise a host of questions about relationships between
knowledge, item responses, and learning for future research
on applications of DCMs to consequential, practical problems
in education.
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