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Abstract
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This paper analyzes the relation between public, educa-
tion-related infrastructure and the quality of education in 
schools. The analysis uses a case study of the establishment 
of two large, high-quality public libraries in low-income 
areas in Bogotá, Colombia. It assesses the impact of these 
libraries on the quality of education by comparing national 
test scores (SABER 11) for schools close to and far from the 
libraries before (2000–02) and after (2003–08) the librar-
ies were opened. The paper introduces a Blinder-Oaxaca 

decomposition on difference-in-differences estimates 
to assess whether variation of traditional determinants 
of mathematics, verbal, and science test scores explains 
the estimates. The analysis finds differences that are 
not statistically different from zero that could be attrib-
uted to the establishment of the libraries. These results 
are robust to alternative specifications, a synthetic con-
trol approach, and an alternative measure of distance.
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1 Introduction

Facilitating public access to information, the traditional primary function of libraries, is

being challenged by the information revolution. However, public libraries serve multiple

functions beyond their role in disseminating materials. A big movement of public library

construction undertaken in the developing world reflects these functions by emphasizing

libraries as the center of social transformation in deprived slums, providing the general

population, especially the less well-off, with access to meeting spaces, cultural activities,

technology, and information services, among others. For example, impressive (and expen-

sive), massive public libraries were constructed in the most impoverished areas of Medelĺın

(Colombia), in zones with high criminal rates, and Bogotá (Colombia). These libraries are

not only places where you can find books or magazines for free, but also places offering a

wide range of services which are intended to motivate the general public towards culture

and education and, ultimately, to change the living conditions of the people.

The goal of this paper is to establish the impact on the quality of education of the 2001

construction of two of these massive libraries (from here on mega-libraries) in the city of

Bogotá (Colombia). Even public schools provide services to a selected group of students,

thus they can be considered a private asset in a sense. Public libraries, however, are

available to students from different schools. Thus, this study will tell us something about

the possible effect of truly public, education-related infrastructure on quality of education.

It is also possible to assess latent complementarities between public (libraries) and private

(schools) educational services in enhancing quality education by estimating the effect of

libraries on the returns that certain school characteristics have on education. In other

words, the paper studies how public libraries affect the quality of education and to what

extent this could be through the enhancement of services provided by schools.

This paper contributes a new perspective to the literature on the determinants of qual-

ity of education. This literature is generally limited to the use of private characteristics

from the school and from the family to explain differences in student performance. By

widening the perspective of determinants beyond the walls of the school and the house,

this paper contributes to the education literature, looking towards public goods that are

around the schools and which could be used to enhance the impact of schools’ inputs. At

the same time, considering that the main objective of libraries is not their direct influence
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on quality of education in schools, this paper contributes to the urban economics litera-

ture by analyzing the existence of externalities and complementarities between this kind

of public infrastructure and schools or households near to the libraries.

The causal effect of access to public libraries on student academic performance is as-

sessed using a Difference-in-Differences (DiD) methodology, combined with propensity score

matching as a robustness test of the results. The procedure takes advantage of the spatial

location of the libraries with the first, El Tunal constructed on the grounds of a public

park, and the second, El Tintal, in an old garbage processing plant. We compare the

average results on standardized test scores at the end of secondary level studies of schools

(SABER 11) close to the libraries and those far from them from 2000 to 2008, that is,

before and after the libraries’ opening. This concept is implemented under both paramet-

ric and nonparametric specifications of the relationship between distance to the library

and test scores. We also implement Oaxaca-Blinder decomposition of the impact of the

program on the quality of education to explore the possible improvement via the variation

of traditional inputs of education quality.

Given our specification, we are considering both the direct and indirect impacts that the

libraries could have on student performance. Direct impact might come from the possibility

that students living close to libraries access library services and programs independently

or that nearby schools deliberately take advantage of the library for their own activities.

Indirect effects might come from the impact of the renovation of the public infrastructure

on the area which could improve crime perceptions, the general mood of the population, or

other neighborhood effects. Due to the lack of information on students’ actual residences

or on specific school programs which take advantage of the libraries, we cannot assess these

channels separately.

Our main results show that while the relationship shows the expected positive sign,

results are not statistically significant. This either tells us that the libraries are not fully

exploited by schools or that the possible gains are concentrated among particular types of

individuals. This opens the question of how aligned incentives are to foster cooperation

between schools and public libraries in order to improve the quality of education. Perhaps

it is not enough to construct beautiful and well-equipped libraries that are near to schools;

a second generation of policies might be required to enhance the coordination between these
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libraries with the current educational environment of neighborhood schools and households.

The remainder of this paper is organized as follows: Section 2 discusses the theoretical

links between libraries and quality of education. Next, Section 3 describes the program

and its context, Section 4 presents data on quality of education and other controls. Section

5 discusses the identification strategy and decomposition of the effect, Section 6 presents

the results and Section 7 concludes.

2 Libraries and academic performance

Vegas and Petrow (2008) classify determinants of education into demand-based and supply-

based components. Both groups include tangible and intangible inputs defined by students’

access to private facilities or their environments. For instance, on the demand side, im-

portant inputs include an environment, defined by parental characteristics, that promotes

study (Fertig and Schmidt, 2002; World Bank, 2005) and the availability of educational

resources in the household, like books or well used internet (Murnane et al., 1981; Gamboa

et al., 2010; Blomeyer et al., 2009). On the supply side, libraries are included as physical

infrastructure along with other, intangible, inputs which are generally considered more im-

portant, such as educational policy which incentivizes competence in schools and teacher

quality (Hanushek and Woßmann, 2007).

Focusing on the impact of libraries on education beyond the ’infrastructure’ component

of schools, Lance (1994) in a largely descriptive study of improvements in school perfor-

mance that are associated with libraries in Colorado, shows a relationship between the

availability of libraries and specific skills such as reading, writing and critical thinking.

Similar relationships are discussed in Lance and others’ further research of libraries in the

United States (Lance, 1994; Lance et al., 2000; Rodney et al., 2002) and the United King-

dom (Williams et al., 2001). Lonsdale (2003) provides a review of studies linking libraries

to educational outcomes, such as Smith (2001) which argues that libraries improving school

performance by 4%. However, this literature does not involve a causal analysis; it rest on

correlation and qualitative analysis.

In terms of proper causal analyses, few in the literature analyze libraries themselves.

The most relevant literature analyzes the impact of programs which make learning materials

more available in schools on educational outcomes. These learning materials, a traditional
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part of library services, are: textbooks (Glewwe et al., 2009), flipcharts (Glewwe et al.,

2004) and computers in schools (Barrera-Osorio and Linden, 2009). Across programs, each

with its own particularities, no authors find impact of the respective learning material on

the quality of education received by the average student.1. However, these evaluations do

not consider the joint effect derived from the interaction of these learning materials, an

effect that could be captured in an analysis of public libraries given that these institutions

provide learning materials simultaneously.

Borkum et al. (2013) is the only study found that explores the role of libraries on

educational outcomes. In an evaluation of an educational program in Bangalore, India

that provides high quality libraries to public primary schools, the authors find no impact

of school libraries on scores of different subjects and on dropout rates. Given that this study

does not consider public libraries and, most importantly, the type of public libraries that

we are considering (mega-libraries), the present study is the first that presents evidence

on causality between public mega-libraries2 on educational outcomes within impoverished

areas in a developing country.

We propose that the production function of education quality for school i, Yi, in urban

areas includes not only the demand characteristics that it faces, X1,i, and private supply (in

this case, schools) characteristics, X2,i, but also the benefit from public, education-related

facilities Zi (equation 1). This additional input acts as a complement to the education

provided by schools. Assuming that these institutions do have a positive impact on the

skills related to test-scores of their users, the relationship between Z and Y might vary

according to the interaction between both the demand and supply elements related to using

the public, education-related facilities. In other words, the impact of public, education-

related facilities on quality of education depends on the degree to which both families

directly use them and schools facilitate their use.3 Let us consider two examples: first, for

school managers who obtain more benefits for promoting activities related to a particular

public facility than others, Z might be larger; second, families living far from public facilities

1In an evaluation of the impact of textbooks on student achievement, Glewwe et al. (2009) finds a
localized positive effect on those students who already had relatively high achievement

2Mega-libraries are not just large buildings full of learning materials but represent a catalyst for rede-
velopment of urban zones and repositories of new public spaces.

3Positive returns to higher levels of school quality based on facility use in Colombia are expected for
families (Gamboa and Rodŕıguez-Lesmes, 2014). However, it is not clear that all schools have the same
incentives (Gaviria and Barrientos, 2001).
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are less likely to benefit from them due to credit or time constraints, which will be reflected

in a lower value of Z than for those who live close by.

Yi = f(X1,i, X2,i, Zi(X1,i, X2,i)) (1)

Our data are limited by only one kind of public, education-related facility (the mega-

libraries) to calculate Z and a we do not have information about the relation between

schools-households and libraries, so we cannot disentangle the relationship between Z and

Y at the level of detail just explained. Given these data restrictions, our data will use the

proximity of schools to the libraries as a proxy of Z.

In order to link the relation between the schools and libraries we use as measure of

intensity the distance between both. That is, we will identify the difference δ of being close

rather than far to the public facility based on assigning a discrete value of T = 1, if a school

is within a close range of a library and T = 0 if the school is outside of this range. Our

main assumption is that if a school is far enough away from the public facility, its students

do not receive any benefit from it (Z = 0, as shown in the Equation 2).

δ = E[Yi|T = 1, X]− E[Yi|T = 0, X]

= f(X1,i(T = 1), X2,i(T = 1), Z(X1,i(T = 1), X2,i(T = 1)))

−f(X1,i(T = 0), X2,i(T = 0), Z(X1,i(T = 0), X2,i(T = 0)))

= f(X1,i(T = 1), X2,i(T = 1), Z(X1,i(T = 1), X2,i(T = 1)))

−f(X1,i(T = 0), X2,i(T = 0), 0)) (2)

3 BibloRed program and Colombian schools

BibloRed is a program which Bogotá’s local administration designed in 1998 and opera-

tionalized by the end of 2001. The idea was to allow the general population to get access to

information services and reading and writing resources. However, the program also seeks

to foment cultural growth and promote research. In the first stage, the operation started

with 3 major libraries (El Tunal, El Tintal and the Virgilio Varco), 15 minor libraries and

1 bibliobus; almost ten years later another major library started operations (Julio Mario

Santodomingo). Each major library has an area of around 10,000 square meters, 150,000
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volumes and 600 reader seats (Tolosa, 2012). Information services not only include books

and magazines, but also children’s rooms with specialized staff, programs for babies and

their parents, activities for teens, workshops in literature, puppets, etc. The intention

is to attract the public with these activities while integrating education into them. One

of the main projects occurs over holidays, when BibloRed implements Bibliovacaciones, a

program with the activities mentioned plus cost-free art, history and literature exhibitions

such as theater plays and films. In this context, it is evident that these libraries have

many activities which enhance the quality of life, particularly through their integration

of culture; thus, the possible effect on the educational performance of children and young

people is just one of the multiple benefits that libraries bring to society.

Since it is not possible to have information on which of the test-takers actually use

the libraries, we propose to use the distance of libraries to their schools as an alternative

indicator for treatment status. As discussed in the previous section, this rests on the

assumption that the use of libraries is likely to be higher for those living closer than for

those who live far, supported by travel costs to libraries incurred by the latter which

reduce students’ incentives to visit them frequently. According to Table 1, 77% of students

in Bogotá live less than 20 minutes from the school they attend. As a result, it is a fair

assumption that distance from school to the library approximates the distance from the

library to students’ residence and, therefore, the likelihood that they live in an environment

affected by libraries.

The Euclidean distance between the school and the local library is shown in Figure 1.We

calculate it based on the information on the spatial location of each school as specified by

Bogotá’s Department of Education. Alternatively, we use road-based distances as shown

in Figure 2.4 Figure B.1 presents the link between both distances. As expected, the road-

based distances all fall above the blue line corresponding to the 45-degree line. The black

dotted line is the predicted linear relationship between both measures, which captures up

to 80% of the total variation. As a robustness check, the main estimators are repeated

using the fitted distance.5

4These calculations were made using ESRI ArcMap 10.2 Closest Facility Analysis. The road network
was obtained from Open Street Map project (OSM).

5More explicitly: AdjustedRD = RD−β̂0
β̂1

, where β̂ come from the OLS regression between road distance

RD and euclidean one ED: RD = β0 + β1ED + u
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Figure 1: Libraries and treatment status allocation: euclidean distance
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Figure 2: Libraries and treatment status allocation: road distance

El Tunal

El Tintal

Libraries
Schools

Zones (Roads)
Treatment (1500)
Control (1500-3500)

¯

El Tintal and El Tunal libraries are located in middle-low income zones, where most of

the students attend nearby schools. Schools near to Virgilio Barco and Julio Mario Santo
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Domingo are populated by, on average, wealthier families which are more likely to live far

from school and use private transport for the daily commuting. If we include the last two

libraries, our approximation of taking the distance between the library and the school to

represent the treatment status will not be accurate. As a result, we decided to include only

El Tintal and El Tunal libraries in this analysis.

In Colombia, schools can be classified according to four important characteristics that

are closely related with the quality of education in the literature. These characteristics

are: whether the school is managed by the government, the proportion of females to males

attending the school, the start of the academic year and the length of the school day. In

regards to the first characteristic, most of the students who would demand the services

of libraries are part of the government-managed education system. Public schools are

free at the primary level and have low tuition fees at the secondary level, but provide a

lower quality of education than private schools (Núñez et al., 2002).6 In regards to the

second characteristic, the fact that some parents may prefer specific types of education

such as religious institutions or gender-specific schools could be correlated with demand-

side factors. With respect to the start of the academic year, schools can be calendar A or

calendar B, which means they start in January or August, respectively. While calendar

A is the norm, calendar B schools are typically private institutions usually designed in

order to follow European or US schedules. This typically means that calendar B schools

have higher test scores due to the strong selection related to the high income of students’

families. Finally, schools can serve students for a full school day (12 hours) or implement

double-shifts, with some students coming in the morning and others in the afternoon. 7

Double-shifting is usually associated with lower academic results in the Latin American

context as documented by Bonilla-Mej́ıa (2011).

6A small number of public schools are managed by the private sector and seem to follow a different
pattern (Sarmiento et al., 2005). None of them is close enough to our libraries.

7Other schools include night shifts or weekend shifts, but we will not consider them. Typically, these
institutions are intended for young adults, who want to finish their secondary education after dropping out,
thus the education incentives and the environment is totally diferent from a typical student.
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4 Data

4.1 Quality of education data

Our measure of education quality is the Colombian equivalent to the SAT, the SABER 11

test administered by the ICFES (Colombian Institute for Evaluation of Education) which

is part of the Ministry of Education. It includes a comprehensive evaluation of different

areas of knowledge, specifically mathematics, verbal and sciences (biology, physics and

chemistry). The test is carried out twice per year due to the existence of two main school

calendars, and, though it is not compulsory for graduation, it is an entry requirement by

universities in order to use it as a common filter for selecting their new students. In order

to ensure comparability, test results are standardized by wave at the Bogotá level in each

one of the described subject areas and an average is taken of the scores (called here the

general result).

Tables 3 and 2 show average, standardized test scores of schools according to their

characteristics including only the universe of schools used in the estimation, specifically,

Bogota schools located within a 3.5 Km range around the libraries as shown in Figure

1. Table 3 shows that students attending schools with a full-day schedule score higher,

on average, than students attending double-shift schools. Among the latter, the students

attending school in the morning score higher, on average, than those attending schools in

the afternoon. This is related to the management of the school: students attending those

managed by the government typically do worse than those managed by the private sector,

which are normally private institutions. These relationships are stable over time and a

common factor in the Colombian quality of education literature (Gaviria and Barrientos,

2001). Table 2 shows that there are also differences in test scores between students who

attend different types of schools in terms of school size, the teacher-student ratio, the

female-male student ratio, and teacher education level. These are all traditional inputs of

education that we will discuss further in the next section

Table 4 shows a U-shape relationship between school quality and distance to the li-

braries. Schools close to the libraries are normally better than those at a medium-range

distance (1 Km - 2.5 Km), but worse than or similar to those far away (2.5 Km - 3.5

Km). As this relationship might be driven by the allocation of inputs, our next section
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will analyze them in more detail.

4.2 Other variables and data restrictions

In order to take into account other sources of variation that might be correlated with

distance to the libraries, we take into account variables that the literature has identified

as key determinants of the quality of education. Variables used to control for institutional

characteristics come from the C600 (a registry of students and school staff) and C100 (a

registry of school infrastructure) from the Ministry of Education. Neighborhood controls

are derived from the General Population Census of 2005 conducted by DANE (national

statistics department). The relationship of these variables to our measures of quality of

education is described in Table 3.

Though C100 information is only available starting from 2002, it provides valuable

information on the physical infrastructure of schools. It includes data on sports facilities,

the presence of a school library and a measure of the quality of educational assets, a dummy

which is one if the school has simultaneously computer, physics and chemistry labs. From

the C600 form we introduce several time-varying variables per school which are related to

the supply-side of quality of education. First, we take into account the number of students

per school in a logarithmic scale and the teacher-pupil ratio of the school. Larger schools

are correlated with better results. To provide us with an idea of the overall quality of

the facilities, we include the area in squared meters of classrooms and sport facilities per

student. We also take into account the proportion of teachers with a graduate degree as a

proxy of their human capital. As the public sector incentivizes the concentration of teachers

with more qualifications, its relationship with quality seems to be negative as described by

Núñez et al. (2002). Gender differences might be relevant, so we include the proportion of

female students and teachers. Finally, we include some controls specific to the examined

cohort: its size and the ratio of female test-takers. This data were cleaned by removing

schools with a teacher-student ratio greater than 0.5 (one teacher for every two students)

or equal to 0 (no teacher to student) as these ratios indicate that the data may contain

errors.

Finally, neighborhood-level controls are available at the census block level from 2005.

We averaged the information of the blocks which were at least 50 meters from the school.
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These controls are the average age and the share in the block of the population who are

students, who have at most primary education, who immigrated from other municipalities

and from rural areas during the last 5 years, who are of working age, who are working or

looking for a job and who fasted for one week.

Tables 5 and 6 report for different ranges of distance to the library (column 1) the

number of schools-students (column 2) and the number of schools-students used in the

model (column 3), respectively.8 The difference between columns two and three are due to

information gaps in C600. Hot Deck imputation methodology was used to minimize the

number of missing, following the implementation of Báez and Buitrago (2010) based on

Ñopo (2008) idea about donors and receptors.

4.3 Test scores and distance to the libraries

After observing the data on the relationships between some features of the campus and

the quality of education, and considering the causal impact that the literature attributes

to these features, it is prudent to identify whether the location of the libraries is correlated

with the type of schools. Table 7 addresses this question by calculating the average charac-

teristics of schools that are located in different ranges from the nearest mega-library. The

main observation is that the nearest schools are more likely to be public. As public schools

tend to have lower test scores (Núñez et al., 2002; Gaviria and Barrientos, 2001), the cor-

relation between education quality and the distance of the libraries is negative. A first

approach to the impact of libraries on test-scores score is to explore the score-distance re-

lationship after deducting the impact of variation of common determinants from the score.

For this, we turn to a classic semi-parametric model. A partial linear regression allows us

to see a non-linear relationship as presented in Equation 3.9 In it, Y is the score, X is

the controls, u is an error such that E[u|d,X] = 0 . Figure B.2 shows the estimates m̂(d),

which gives the relationship between the score and the distance variation by discounting

usual controls.

Y = m(d) +Xβ + u (3)

8In the case of public institutions with a school is considered as the combination seat-day.
9The estimation was performed following the algorithm differences Yatchew (1997), implemented by

Lokshin (2006).
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We found a U-shaped relationship where the minimum is centered near 1500 meters. As

a result, our analysis will be particularly focused on schools located between 750 and 2000

meters from libraries, where the impact of libraries is likely to reach. However, these graphs

are used just to explore the relationship, because they include unobserved determinants u,

in fact the U pattern is found both before and after 2002.

To estimate the effect we must assume that unobservable variables can vary across

the distance, but the time variations of these unobservable variables are not related with

distance. This restriction allows us to identify the average impact on the schools ‘close’ to

the libraries compared to those that are ‘distant’ and supports the motivation to use the

DiD strategy, as will be discussed in the next section.

5 Empirical Strategy

The impact of libraries on quality of education is identified using the Difference in Difference

(DiD) method. We define the schools ‘near’ to the libraries as treated, and those ‘far’

from them as controls. That is, we are assuming that any difference between these two

groups of schools would have been preserved if no libraries were constructed (parallel

trends assumption). It is important to remember that in these cases the ‘libraries’ refer to

the entire intervention on the public infrastructure and urban planning development that

occurred in those areas. Thus, the estimation is based on the provision, not the intensity

of use, of libraries which is assumed to be a function of the distance of the school to the

physical building.

The identification strategy involves two stages: the first refers to the measure of the

magnitude and significance of the impact, and the second is to decompose it into the impact

due to changes in observed inputs and to variations not linked to those inputs. The de-

composition addresses the question of complementarities between libraries and traditional

determinants of the quality of education, in other words, how the libraries enhance the

impact of traditional inputs already present in schools.

As described before, our treatment indicator is the spatial proximity from schools.

However, being ‘near’ or ‘far’ is an arbitrary definition and requires a selection rule that is

part of the research question. Discrete and continuous options were considered to define

exposure treatment using the distance of each school to the libraries, d .
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A first alternative (continuous approach) is to impose a parametric restriction on the

relationship between the distance to library and test scores. Given the results from the

partially-linear regression, it is possible to presume that the impact decreases with the

inverse of distance up to some far, arbitrary cutoff R1 where we set the impact to be

exactly 0, including all the schools within a fixed radius R2. Hence, we define T = R1
d − 1

if d ≤ R1 and T = 0 if d ≥ R1. For this specification we present results for ratios

R1 ∈ {1500, 2000, 2500, 3000, 3500} and R2 = 3500.

On the hand, the effect could be discontinuous (discrete approach). Hence, in order to

avoid any assumption on the distance-scores’ relation, schools within a certain ratio, R2 is

assigned into treated T = 1 and control groups T = 0 using an arbitrary distance to the

library cut-off R1. This specification, henceforth Discrete I, is represented in Figure 1. An

alternative, Discrete II, is to omit some schools between treatment and control zones, so

the control zone starts at R3 ∈ [R1, R2]. Implementing different cut-offs in the analysis

did not show substantial differences. We will present results using R2 = 3500, R3 = 2000

and R1 ∈ {750, 1000, 1250, 1500, 1750, 2000}.

5.1 Estimation of the general impact (DiD)

We define the average treatment effect on the treated δτ , as the impact on average test

scores at year τ for schools that are located close to the libraries in comparison to those

that are far from them. If we consider the continuous treatment scenario, the fullest impact

occurs for schools that are located right next to one of the libraries. This parameter is

estimated using the classic setup as presented in equation 4. Let Yit be the average test

scores of school i at year t, Ti the treatment status of each school, At a dummy that is

1 if t ≥ 2003, 1(τ = t) is an indicator for year τ being equal to year t, and fix effects γi

and γt. For this specification, we assume that the parallel trends hold conditional on the

school-level controls Xit.

Yit =
2008∑

τ=2003

δτTi · 1(τ = t) + β1At + ηXit + γi + γt + eit (4)

The identification assumption might be too strong; schools placed in different areas

might follow dissimilar trends due to uncontrolled factors. For instance, migration of
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people with different willingness to spend on education may shape schools’ investments in

a way that is not captured by our current covariates. In essence, some schools might be

improving while others worsening. In order to address this, we can include school-specific

trends10, t · γi, as shown in equation 5. The limitation of this approach is that trends can

differ only as long as they do so in a linear fashion.

Yit =

2008∑
τ=2003

δτTi · 1(τ = t) + β1At + ηXit + γi + γt + ωit · γi + eit (5)

5.2 Propensity Score Matching and Synthetic Control

One of the main concerns with the DiD method for studies with limited control units

is how to choose the best control when there are few treated units, which implies high

sensitivity of the estimation to the control selection, and when the unit of observation is an

aggregate (eg. countries, states or schools). Abadie and Gardeazabal (2003) introduced an

approach known as the ‘synthetic control’ to deal with these problems. The idea is to select

a set of weights for the control units to construct the parallel trends between outcomes

before the intervention. However, as is suggested by Abadie and Gardeazabal (2003), the

synthetic control needs a long period of time prior to the intervention in order to control for

structural patterns in both observables and non-observables (Abadie et al., 2010). Given

that there are just three years available before the implementation of the mega-libraries

and that the objective is to forecast over the next six years, the synthetic control strategy

might lead to misleading results. An alternative that might be more suitable is to weaken

the DiD parallel trends assumption by introducing matching into the pre-treatment period

(Blundell and Dias, 2009). The matching estimator relies on the minimization of a distance

function which is increasingly hard to estimate with the number of included covariates. A

traditional way to simplify this problem, when there is more than one treated unit, is

to perform the matching based on the predicted likelihood of being a treated unit, the

propensity score (Rosenbaum and Rubin, 1983).

In this paper we combine both approaches by implementing kernel propensity score

matching11 (Heckman et al., 1997) that includes as controls the pre-treatment evolution

10For other applications that introduce this technique, see for instance, Besley and Burgess (2004).
11The procedure was implemented using psmatch2 (Leuven and Sianesi, 2014) in Stata 12.
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of test scores, which is in line to the synthetic control matching step. Once the synthetic

control is constructed by re-weighting the non-treated schools, DiD specifications from

equations 4 and 5 are applied.12

In doing so, the underlying identification assumption changes slightly. Once the ob-

served covariates are taken into account, and schools close and far from the libraries follow

similar time-trends or differ in a linear way, estimated impacts can be attributed to the

mega-libraries. However, keep in mind that the identification will be invalid if there were

events that were not considered and affected some of the schools (either close or far from

libraries) and not the others.

Apart from the 2000-2002 test scores, the matching variables considered are the fol-

lowing: the proportion of teachers with graduate studies, pupil-teacher ratio, public school

dummy, morning school day dummy, complete school day dummy, female-teacher ratio,

11th grade female-male students ratio, 11th grade students, total students, girls-students

ratio, built area per student, classrooms area per student, sports area per student, and a

dummy for the presence of a school library.

5.3 DiD-OB: Decomposition of the impact

As discussed, the construction of the libraries implied a massive urban development. As

a result, it is likely the mega-libraries triggered changes in other inputs. For instance, the

construction of mega-libraries could lead to emigration from the area due to changes in real

estate prices, also they could change the number of private schools or the teacher-student

ratio. Thus part of the observed changes between schools close and far from libraries would

be due to this channel. Hence, we would be interested on see if the program had an impact

on the inputs and such variation explain part of the outcomes difference, let’s call that

part ∆X , and if there is part of that impact that is not due to them, ∆0, instead this

part of impact could be due to changes on the impact that teachers with high level of

education could has with the presence of the libraries or could be due to changes in the

efficiency of public schools who engage with the libraries’ services. In that case, ∆0 would

be more likely to be related with the complementarity between schools and libraries. This

is achieved by implementing a novel strategy, proposed in this study, that introduces the

12As the matching is based on discrete categories, the continuous approach cannot be implemented.
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Oaxaca (1973) and Blinder (1973) decomposition into a DiD context (see the appendix for

details). The conditions for the identification of the effect are the usual parallel trends of

DiD but without conditioning on covariates. The decomposition is obtained by applying

equation 6.

Yit = α0 +α1Tit+α2Ait+α3X+α4Xit ·Tit+α5Xit ·Ait+α6Tit ·A+α7X ·Tit ·Ait+u (6)

From this equation, we can define the impact generated by the covariates variation

(induced by the programme) ∆X , and the variation that is unrelated to them, ∆0:

δ = (E[y|T = 1, A = 1]− E[y|T = 0, A = 1])− (E[y|T = 1, A = 0]− E[y|T = 0, A = 0])

δ = ∆0 + ∆x

δ = α6 + (α4 + α5 + α7)E[X|T = 1, A = 1]− α5E[X|T = 0, A = 1])− α4E[X|T = 1, A = 0]

+ α3[(E[X|T = 1, A = 1]− E[X|T = 0, A = 1])− (E[X|T = 1, A = 0]− E[X|T = 0, A = 0])]

Standard errors are calculated by bootstrapping due to the lack of an analytical expres-

sion for them. In order to present results by year, the strategy is implemented by comparing

the pre-intervention period against each treatment-year in a separate regression.

6 Results and discussion

6.1 Classic DiD strategy

First using the parametric approach, we compare the evolution of the treatment group in

each year from 2003 to 2008 against the pre-treatment period, 2000 to 2002. In Table

8, we consider the intensity of treatment to be inversely proportional to the distance. It

ranges from 1, the intensity received by a school in front of the library, to 0, a school that

is located R1 meters or further. The general impact of being just beside the library implies

an increase on average scores between 0.02 and 0.06 standard deviations (R1=1500 for

2003 and 2008, respectively). This impact is lower when we assume that there is a slower

decay in the benefit received based on distance (higher R1), suggesting that the area of the
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impact is relatively small. However, those impacts are not statistically different from 0.

Table 9 presents the results from the discrete approach. In Panel A the treatment

group are those schools between 0 and R1 meters from the libraries and the controls are

those from R1 to R2 (fixed at 3.5 Km), as shown in the map from Figure 1. Estimates

range between 0.21 for the lowest ratio in 2005 and -0.05 for the largest. This is consistent

with the previous specification, which found that the impact is greater for the nearest

schools. However, there is no evidence of impact different from 0. Similar results are found

in the last specification, shown in panel B, where the controls are those schools between

R3 = 2000 and R2. That is, we are not taking into account those schools between R1 and

R3 meters. These results are also presented in Figure 3, as a reference for comparison.

Figure 3: Euclidean Distance Estimators

Equation 5 relaxed the parallel trends assumptions by allowing school-specific trends.

Figure B.3 shows that for both the discrete specification II and the continuous approaches,
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schools which are very close to the libraries seems to have a declining trend in the outcome.

However, that pattern is still statistically non-different to zero.

One clear concern is the measure of distance. The Euclidean approach might not

capture the real cost to travel between points in certain contexts. For instance, there

might be restrictions due to geographic accidents or infrastructure. However, in this urban

context it might not be a bad approach. An alternative that takes these issues into account

is road distance, which measures the total distance necessary to reach a mega-library while

using the road infrastructure. Figure B.4 presents the main estimates using this approach.

In order to be able to compare both main and additional results, the road distance was

rescaled using a linear function (see section 3) as the relevant difference might come not

from the absolute position of each school but from the relative one. The remainder of this

paper will consider only the Euclidean measure.

6.2 Synthetic Control

The next step is to introduce the matching strategy into the DiD. The main objective is

to ensure that schools which are close to the libraries are compared to similar schools that

are far from them. In order to achieve this, these schools were matched on the propensity

score. Figures 4 and 5 show that once the matching weights are introduced, the propensity

score calculated for the synthetic control group resembles the one of the treated schools

(according to the treatment definition). The purpose of this step is to ensure that by

matching the score, the covariates are matched as well.

We can check the performance of the technique in Tables 10 and 11, for both discrete

specification I and II respectively. For each distance definition, the tables present the dif-

ference for each match variable between treatment and control groups before (General)

and after (Matched) the matching as well as the percentage reduction on the standard-

ized bias (B.R.). Starts on the tables reflect the results of t-tests for equality of means

for each difference where the null hypothesis is that the differences are equal to 0. The

matched results appear balanced, and, giving that we are matching the outcome trend

before the intervention, the resulting synthetic control group trend closely resembles that

of the treatment. A graphic representation of this is presented in Figures B.5 and B.6. The

only one for which the technique does not look as successful is for specification II, where

20



the treatment seems to be following a quite different trend.

Figure 4: Propensity Score Matching at 2002: Discrete I

Figure 5: Propensity Score Matching at 2002: Discrete II

Apart from the quality of matching, Figures B.5 and B.6 also tell another story. It seems

that schools which are closer to the libraries have a decreasing trend compared to distant
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schools which are comparable in key covariates. This is reflected in the DiD estimates

in Figure 6. In contrast with Figure 3, almost all of the estimates are negative, and, for

years 2006 and 2007, some of them are significant. In other words, after the libraries

were constructed, schools nearby, especially those which are very close to the libraries,

started to perform worse than similar ones not as close to the libraries. This means that

either the libraries and the urban development in their surroundings did decrease student

performance relative to their peers13 or that the identification assumption is not as good

as desired.

Figure 6: Matching at 2002 Estimators

As described before, Figure B.6 for the 1000 meter definition according to specification

II shows that the declining trend for some of these schools started prior to the construction

of the libraries which was not fully controlled for by the matching. In order to assess

this, performance data was de-trended by school (see Equation 5). Figure 7 and Table 12

present the results of this approach. Estimated coefficients are still negative but are not

different from zero.

13It might be that this schools did perform better, but not as much as to other schools in the city which
is the base of our standardization.
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Figure 7: Matching at 2002 Estimators with School-Specific Trends

6.3 Blinder-Oaxaca Decomposition

So far it seems that there is no significant variation on the relationship between distance

to the libraries and average tests scores on mathematics, science and verbal sections.14 It

might be the case that the urban transformation was related to changes in inputs in the

quality of education production function. Table 13 studies this via the Oaxaca-Blinder

DiD decomposition proposed before, but we should bear in mind that the identification

assumptions are stronger than in the simple DiD analysis. In most of the cases, it seems

that the difference between schools far and close to the libraries on test scores due to the

observed inputs is negative (∆X). The direct impact of the libraries on test scores (∆0) is

around 0.1 and 0.2 standard deviations for schools located between 0 and 1.5 Km from the

libraries. As a reference, the difference between students with college graduated mothers

and the others in the same sample (3.5 Km at most for each library) is 0.6 standard

deviations. However, these results are not different from 0.

14Results for each one of these scores separately are not meaningfully different from the ones presented
here
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6.4 Summary

The fact that estimation procedures with different sets of assumptions provide similar-

results gives us a good idea of the underlying relationship between the construction of

mega-libraries and quality of education: there is no evidence of a positive and statistical

significant impact of the libraries on average standardized scores. We can interpret these

results in many different ways. First, the fact that the numbers are positive but the

variance is large could be related to the small number of observations available (around

190 schools per year). If that is the case, any significant positive relationship between

public libraries and schools’ scores, is likely to be small. This does not mean that the

libraries are useless for education: they could improve other skills that are not related

with tests scores but which are important for the society, such as the availability of safe

spaces and exposure to cultural activities. Current information makes it impossible to

test those alternatives. Second, the high variance could be due to the positive impact of

libraries only on those schools, students or teachers that decided to take advantage of the

libraries and zero impact on those that did not. Heterogeneous impacts are the rule, not

the exception, in the literature of educational inputs (Murnane and Ganimian, 2014).15

Without further information on the selection mechanism, it is impossible to determine the

impact only on those schools, students or teachers that are willing to take advantage of

the public infrastructure.

In the case that some schools, students or teachers within similar distances to libraries

use the libraries facilities at different rates, policy may not only be needed to construct and

run these public facilities but also to impose incentive schemes that induce to use them.

Glewwe and Kremer (2006) argue that the provision of resources is insufficient to improve

student performance and the teachers should be instructed in order to maximize the po-

tential advantage of the resources. Moreover, using the theoretical framework proposed by

Witte and Geys (2011), the provision of most public goods, in this case the libraries, need

two stages of policies: the first one for the construction of the libraries, while the second

15Murnane and Ganimian (2014) remark three cases: High- and low-education parents responded very
differently to initiatives to empower school councils in Niger (Beasley and Huillery, 2012); low- and high-
achieving students derived very different benefits from free textbooks in English in Kenya (Glewwe et al.,
2009); and rural girls did not profit nearly as much as urban boys from the use of LEGO kits to teach
science in Peru (Beuermann et al., 2013)
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should work on how these programmatic inputs are transformed into observed and desired

outputs of education. For instance, prizes for both teachers and students for projects that

involve the usage of these resources might be relevant.

7 Conclusions

We have analyzed the impact on the quality of education, measured by mathematics,

science and verbal SABER 11 scores, of the construction of two big, public libraries that

involved the transformation of low-income, urban areas in Bogotá, Colombia. To do so,

we measured how the construction of the libraries could change the test scores of nearby

schools, controlling for observable variables that are related to students’ performances. We

opted for a DiD approach to analyze the evolution of the relation of distance-to-library

and average test scores before and after the public libraries’ introduction at the school

level. This approach assumes that the effect of the libraries decays with distance and that,

without the intervention, the relationship would have been unaltered over time. We also

propose and implement a decomposition of the effect considering the potential variations

of traditional determinants of quality of education.

The libraries analyzed are public, education-related infrastructure that is progressive

in a context of inequality in access to quality school education. Both libraries were built in

areas populated by the less well-off and where schools have relatively poor facilities. Thus,

the policy has the potential to boost the equality of opportunities in terms of quality of

education. However, our findings present non-statistically different from zero impacts of

the libraries on the average standardized test scores. That is, there is no evidence that

schools close to the libraries are getting a clear advantage on test scores against those with

similar characteristics but for their location further from the new public infrastructure.

It is important to remark that the results are correct only under the validity of the

assumptions defined in the identification strategy. In general, there are two main scenarios

in which the assumptions would be invalid. First, if it is the case that the intensity of the use

of libraries is unrelated to the distance from them. For instance, there could be a network

of teachers which take advantage of library facilities though their schools are not close to

the libraries. Another reason could be that the network of medium and small libraries

communicates perfectly with the more distant mega-libraries, thus there is not difference
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in access according to the distance. Second, it might be the case that schools close and

far from the libraries were affected heterogeneously by other events which are not fully

captured by observed covariates. As an example, patterns of migration or criminality in

the zones that are near to the libraries which did not affect cohort sizes, gender composition,

or any other observed inputs with respect to the other neighborhoods could explain those

results.

These results do not necessarily mean that libraries do not improve the quality of

education. On one hand, libraries might be related to skills that are not directly reflected

in test scores or to these types of skills but for students in older stages of their lives,

such as college students. We are unable to assess these cases via the present methodology.

On the other hand, if a direct objective of these types of programs is to enhance test

scores, our results imply that the policies that introduced these public facilities should be

complemented with stronger programs which link and coordinate them with the already

existent educational institutions. The capacity to reach the target (school-students and

teachers) is an important part of the policy which might require more attention from local

governments. For instance, prizes for both teachers and students for projects that involve

the usage of these resources might be relevant.
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Gamboa, L. F., Rodŕıguez-Acosta, M. and Garćıa-Suaza, A. (2010), Academic achievement

in sciences: the role of preferences and educative assets, Documentos de Trabajo 78,

Universidad del Rosario - Facultad de Economı́a.

Gaviria, A. and Barrientos, J. (2001), ‘Caracteŕısticas del plantel y calidad de la educación
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A A. Tables

Table 1: Travelling time to school

Time Freq. Cum.

Less than 10 min. 51% 51%
Between 10 and 20 min. 26% 77%
Between 20 y 30 min. 23% 100%

Source: DANE Population Census 2005

Table 2: Average test score by institutional and environment characteristics

Year

2000 2001 2003 2004 2005 2006 2007 2008 Total

School day
Complete 0.040 -0.075 -0.017 -0.046 0.020 0.016 0.030 0.051 0.002
Morning -0.065 -0.209 -0.193 -0.288 -0.251 -0.313 -0.394 -0.365 -0.263
Afternoon -0.252 -0.451 -0.356 -0.362 -0.420 -0.474 -0.460 -0.475 -0.408
Total -0.082 -0.234 -0.174 -0.217 -0.197 -0.235 -0.245 -0.234 -0.204

Type of school
Public -0.139 -0.312 -0.256 -0.289 -0.339 -0.410 -0.432 -0.414 -0.328
Private -0.034 -0.162 -0.097 -0.147 -0.062 -0.068 -0.073 -0.060 -0.088
Total -0.082 -0.234 -0.174 -0.217 -0.197 -0.235 -0.245 -0.234 -0.204

Source: Own calculations based on SABER 11 (include imputations).
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Table 3: Average test score by infrastructure and teaching force

Year

2000 2001 2003 2004 2005 2006 2007 2008 Total

Students
Less than 300 -0.26 -0.52 -0.44 -0.42 -0.41 -0.33 -0.41 -0.29 -0.38
Between 300-600 -0.22 -0.36 -0.15 -0.21 -0.13 -0.19 -0.26 -0.16 -0.21
Between 600-1000 -0.02 -0.15 -0.03 -0.14 -0.19 -0.17 -0.05 -0.14 -0.12
More than 1000 0.13 -0.01 -0.12 -0.09 -0.10 -0.16 -0.16 -0.18 -0.10
Total -0.06 -0.21 -0.15 -0.18 -0.19 -0.20 -0.20 -0.19 -0.17

Teacher-student ratio
Less than .03 -0.08 -0.57 -0.32 -0.29 -0.31 -0.34 -0.25 -0.28 -0.31
Between .03-.04 -0.06 -0.16 0.01 -0.19 -0.21 -0.25 -0.20 -0.27 -0.18
Between .04-.05 -0.11 -0.21 -0.00 -0.18 -0.00 -0.04 -0.17 0.01 -0.11
Between .05-.06 0.01 -0.10 -0.46 -0.03 -0.12 -0.19 -0.19 -0.27 -0.13
More than .06 -0.21 -0.45 -0.37 -0.35 -0.30 -0.34 -0.40 -0.36 -0.36
Total -0.08 -0.23 -0.17 -0.22 -0.20 -0.23 -0.25 -0.23 -0.20

Girls-students ratio
Less than 0.15 0.15 0.41 0.29 0.11 0.13 0.11 0.03 -0.03 0.15
Between 0.15-0.43 0.10 -0.06 -0.08 -0.11 -0.11 -0.15 -0.28 -0.15 -0.11
Between 0.43-0.48 -0.11 -0.29 -0.19 -0.19 -0.13 -0.18 -0.06 -0.20 -0.17
Between 0.48-0.52 -0.20 -0.40 -0.31 -0.30 -0.36 -0.37 -0.40 -0.33 -0.34
Between 0.52-0.85 -0.22 -0.36 -0.18 -0.39 -0.23 -0.28 -0.34 -0.42 -0.30
More than 0.85 0.24 0.26 0.33 0.13 0.09 0.01 0.03 0.16 0.16
Total -0.08 -0.23 -0.17 -0.22 -0.20 -0.23 -0.25 -0.23 -0.20

Basic level teachers
Less than .25 -0.03 -0.20 -0.11 -0.16 -0.19 -0.22 -0.20 -0.21 -0.17
Between .25-.5 -0.26 -0.35 -0.43 -0.47 -0.13 -0.38 -0.36 -0.21 -0.33
Between .5-.75 0.21 -0.03 -0.22 -0.36 -0.05
More than .75 -0.31 -0.83 -0.66 -0.52 -0.76 -0.59 -0.90 -0.61
Total -0.06 -0.22 -0.15 -0.20 -0.19 -0.23 -0.21 -0.21 -0.19

Highest Level teachers
Less than .25 -0.08 -0.25 -0.19 -0.24 -0.14 -0.18 -0.17 -0.17 -0.18
Between .25-.5 -0.16 -0.37 -0.15 -0.55 -0.17 -0.18 -0.81 -0.26 -0.30
Between .5 -.75 -0.12 -0.28 -0.19 -0.27 -0.33 -0.32 -0.41 -0.34 -0.29
More than .75 -0.04 -0.20 -0.08 -0.18 -0.11 -0.30 -0.24 -0.32 -0.19
Total -0.09 -0.26 -0.18 -0.24 -0.18 -0.21 -0.23 -0.22 -0.20

Source: Own calculations based on C600 and SABER 11 (include imputations).
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Table 4: Average test score by distance

Years

Distance to library 2000-2002 2003-2005 2006-2008 Total

Less than 1000 -0.141 -0.048 -0.150 -0.110
Between 1000-2500 -0.239 -0.306 -0.346 -0.306
More than 2500 -0.112 -0.140 -0.177 -0.147
Total -0.161 -0.196 -0.238 -0.204

Source: Own calculations based on SABER 11 (include imputations).

Table 5: Schools by distance

Distance to the Schools Used in
library (meters) the models

0-500m 5 4
500m-1000m 15 11
1000m-1500m 28 27
1500m-2000m 30 24
2000m-2500m 48 40
2500m-3000m 45 39
3000m-3500m 45 38
3500m-4000m 59 49

Total 275 232

Soruce: Own calculations

Table 6: Students by distance

Distance to the Students Used in
library (meters) the models

0-500m 237 115
500m-1000m 2996 2888
1000m-1500m 5372 5178
1500m-2000m 5229 4820
2000m-2500m 6322 5629
2500m-3000m 7634 7032
3000m-3500m 6263 6086
3500m-4000m 7685 7195

Total 41738 38943

Source: Own calculations
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Table 7: Distribution by distances and school characteristics

Distance to the library

Between 0 and 1
Km

Between 1 and 2
Km

Between 2 and 4
Km

% % %

Type of School
Public 59.84 58.96 50.80
Private 40.16 41.04 49.20
Total 100 100 100

Post-graduated teachers
ratio
Less than 30% 51.18 61.32 63.19
Between 30% y 60% 25.20 16.98 19.93
More than 70% 23.62 21.70 16.88
Total 100 100 100

School day
Complete 31.50 37.26 42.90
Morning 35.43 28.07 24.64
Afternoon 33.07 34.67 32.46
Total 100 100 100

Student-teacher ratio
Less than 20 20.47 21.70 23.84
Between 20 and 30 59.84 58.96 54.06
More than 30 19.69 19.34 22.10
Total 100 100 100

School size
More than 1000 students 39.37 50.47 27.90
Between 500 and 1000 students 37.01 25.47 38.84
Less than 500 students 23.62 24.06 33.26
Total 100 100 100

Gender of the school
Boys or Girls school 0 11.79 11.67
Coeducational school 100 88.21 88.33
Total 100 100 100
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Table 8: DID Continuous Specification: Exponential

Estimated values of δτ from

Yit =
∑2008

τ=2003 δ
τTi · 1(τ = t) + β1At + ηXit + γi + γt + eit

Exponential Specification: For a school of distance di from a library, Ti = R1
di
− 1 if di ≤ R1 and Ti = 0 if di ≥ R1

Distance Def 2003 2004 2005 2006 2007 2008
R1=1500 0.03 −0.02 0.06 0.05 0.04 0.06

(0.07) (0.05) (0.08) (0.09) (0.10) (0.09)
R1=2000 0.02 −0.01 0.03 0.03 0.02 0.04

(0.04) (0.03) (0.05) (0.06) (0.07) (0.06)
R1=2500 0.01 −0.01 0.02 0.02 0.01 0.03

(0.03) (0.02) (0.04) (0.04) (0.05) (0.04)
R1=3000 0.01 −0.00 0.02 0.01 0.01 0.03

(0.03) (0.02) (0.03) (0.03) (0.04) (0.04)
R1=3500 0.01 −0.00 0.01 0.01 0.01 0.02

(0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

R2=3500. Standard errors clustered by locality in parentheses. Significance level: * 90%, ** 95%, *** 99%.

Table 9: DiD Discrete

Estimated values of δτ from

Yit =
∑2008

τ=2003 δ
τTi · 1(τ = t) + β1At + ηXit + γi + γt + eit

A. Specification I: Schools between 0 and R1 meters are treated, Ti = 1, and from R1 to R2 meters are controls, Ti = 0
Distance Def 2003 2004 2005 2006 2007 2008
R1=750 0.04 0.02 0.21 0.12 0.10 0.15

(0.19) (0.17) (0.22) (0.26) (0.28) (0.26)
R1=1000 0.10 0.04 −0.02 0.04 −0.03 0.02

(0.13) (0.11) (0.14) (0.16) (0.16) (0.16)
R1=1250 0.10 0.06 −0.02 0.03 −0.02 0.04

(0.09) (0.08) (0.10) (0.11) (0.12) (0.11)
R1=1500 0.03 0.05 −0.03 0.04 −0.02 0.05

(0.07) (0.06) (0.07) (0.07) (0.08) (0.08)
R1=1750 0.02 −0.00 −0.06 −0.00 −0.04 0.03

(0.06) (0.06) (0.06) (0.07) (0.07) (0.07)
R1=2000 0.02 −0.01 −0.02 −0.05 −0.05 0.02

(0.06) (0.05) (0.06) (0.06) (0.06) (0.06)

B. Specification II: Schools between 0 and R1 meters are treated, Ti = 1, and from R3 to R2 meters are controls, Ti = 0
Distance Def 2003 2004 2005 2006 2007 2008
R1=750 0.06 0.02 0.18 0.09 0.07 0.14

(0.19) (0.17) (0.22) (0.26) (0.28) (0.26)
R1=1000 0.10 0.03 −0.03 0.01 −0.05 0.02

(0.13) (0.11) (0.14) (0.15) (0.16) (0.16)
R1=1250 0.10 0.05 −0.03 −0.00 −0.04 0.03

(0.09) (0.08) (0.10) (0.11) (0.12) (0.11)
R1=1500 0.03 0.03 −0.03 0.01 −0.03 0.04

(0.07) (0.06) (0.07) (0.07) (0.08) (0.08)
R1=1750 0.02 −0.01 −0.05 −0.03 −0.05 0.03

(0.06) (0.06) (0.06) (0.07) (0.07) (0.07)
R1=2000 0.02 −0.01 −0.02 −0.05 −0.05 0.02

(0.06) (0.05) (0.06) (0.06) (0.06) (0.06)

R2=3500, R3=2000. Standard errors clustered by locality in parentheses. Significance level: * 90%, ** 95%, *** 99%.
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Table 12: DiD Discrete after Matching Including School-Specific Trends

Estimated values of δτ from

Yit =
∑2008

τ=2003 δ
τTi · 1(τ = t) + β1At + ηXit + γi + γt + ωit · γi + eit

A. Specification I: Schools between 0 and R1 meters are treated, Ti = 1, and from R1 to R2 meters are controls, Ti = 0
Distance Def 2003 2004 2005 2006 2007 2008
R1=750 −0.23 −0.22 0.02 −0.14 −0.29 −0.09

(0.15) (0.25) (0.24) (0.38) (0.51) (0.61)
R1=1000 −0.12 −0.16 −0.20 −0.24 −0.41 −0.24

(0.11) (0.15) (0.20) (0.23) (0.28) (0.35)
R1=1250 −0.08 −0.11 −0.22 −0.21 −0.33 −0.27

(0.11) (0.16) (0.22) (0.26) (0.29) (0.35)
R1=1500 −0.06 −0.04 −0.14 −0.10 −0.19 −0.13

(0.09) (0.11) (0.15) (0.18) (0.21) (0.24)
R1=1750 −0.06 −0.06 −0.16 −0.13 −0.19 −0.14

(0.09) (0.11) (0.14) (0.17) (0.19) (0.23)
R1=2000 −0.06 −0.04 −0.08 −0.12 −0.14 −0.05

(0.08) (0.11) (0.14) (0.17) (0.20) (0.23)

B. Specification II: Schools between 0 and R1 meters are treated, Ti = 1, and from R3 to R2 meters are controls, Ti = 0
Distance Def 2003 2004 2005 2006 2007 2008
R1=750 −0.27 −0.15 0.01 −0.09 −0.24 −0.01

(0.20) (0.32) (0.29) (0.46) (0.59) (0.71)
R1=1000 −0.20∗ −0.24 −0.39 −0.45 −0.56∗ −0.42

(0.11) (0.18) (0.26) (0.28) (0.32) (0.39)
R1=1250 −0.05 −0.09 −0.25 −0.23 −0.35 −0.28

(0.13) (0.17) (0.23) (0.27) (0.30) (0.34)
R1=1500 −0.07 −0.04 −0.18 −0.14 −0.22 −0.14

(0.09) (0.12) (0.17) (0.20) (0.22) (0.25)
R1=1750 −0.07 −0.04 −0.13 −0.11 −0.18 −0.12

(0.09) (0.11) (0.15) (0.18) (0.21) (0.24)
R1=2000 −0.06 −0.04 −0.08 −0.12 −0.14 −0.05

(0.08) (0.11) (0.14) (0.17) (0.20) (0.23)

R2=3500, R3=2000. Standard errors clustered by locality in parentheses. Significance level: * 90%, ** 95%, *** 99%.
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Table 13: BO-DD Discrete

Blinder-Oaxaca decomposition of the treatment effect: delta = ∆0 + ∆x

δ : Total impact
∆X : Impact due to variation on covariates
∆0 : Impact due to other channels

Treated/Controls 2003 2004 2005 2006 2007 2008

R1=750 δ 0.2008 0.2252 0.4293 0.3343 0.1444 0.1726
10/182 (0.3981) (0.3644) (0.4220) (0.5306) (0.4816) (0.4339)

∆0 0.0310 0.2346 0.5356 0.4517 0.3101 0.3223
(0.4573) (0.3555) (0.4093) (0.4972) (0.4399) (0.4144)

∆X 0.1698 −0.0094 −0.1063 −0.1174 −0.1657 −0.1497
(0.1710) (0.0985) (0.1055) (0.1137) (0.1078) (0.1005)

R1=1000 δ 0.1626 0.1460 0.0851 0.1524 −0.0009 0.0465
19/173 (0.2353) (0.2138) (0.2474) (0.2810) (0.2593) (0.2562)

∆0 0.1253 0.1787 0.2083 0.2776 0.1597 0.2296
(0.2616) (0.2075) (0.2410) (0.2625) (0.2414) (0.2469)

∆X 0.0373 −0.0327 −0.1232 −0.1252 −0.1605 −0.1831∗

(0.1308) (0.1149) (0.1120) (0.1241) (0.1073) (0.1080)

R1=1250 δ 0.1308 0.1056 0.0286 0.0639 −0.0229 0.0463
27/165 (0.1595) (0.1489) (0.1789) (0.1891) (0.1787) (0.1774)

∆0 0.1360 0.1890 0.1740 0.2745 0.2032 0.2613
(0.1895) (0.1644) (0.1890) (0.2016) (0.1754) (0.1850)

∆X −0.0051 −0.0833 −0.1455 −0.2107 −0.2262∗∗ −0.2149∗

(0.1091) (0.1158) (0.1079) (0.1331) (0.1118) (0.1173)

R1=1500 δ 0.0560 0.0840 0.0115 0.0790 −0.0202 0.0637
44/148 (0.1194) (0.1145) (0.1239) (0.1245) (0.1430) (0.1270)

∆0 0.0535 0.1459 0.1349 0.2530 0.1201 0.1831
(0.1390) (0.1278) (0.1330) (0.1586) (0.1466) (0.1568)

∆X 0.0026 −0.0619 −0.1235 −0.1740 −0.1403 −0.1193
(0.0990) (0.1230) (0.1052) (0.1341) (0.1155) (0.1303)

R1=1750 δ 0.0437 0.0320 −0.0172 0.0379 −0.0237 0.0574
52/140 (0.1081) (0.1109) (0.1106) (0.1213) (0.1337) (0.1144)

∆0 0.0515 0.0611 0.0967 0.2114 0.1084 0.1779
(0.1211) (0.1157) (0.1204) (0.1469) (0.1370) (0.1436)

∆X −0.0078 −0.0291 −0.1139 −0.1735 −0.1321 −0.1206
(0.0906) (0.1131) (0.0958) (0.1302) (0.1204) (0.1273)

R1=2000 δ 0.0208 −0.0132 −0.0178 −0.0446 −0.0722 0.0125
70/122 (0.1074) (0.1079) (0.1071) (0.1175) (0.1178) (0.1107)

∆0 0.0230 0.0657 0.0530 0.1115 0.0862 0.1253
(0.1206) (0.1033) (0.1103) (0.1387) (0.1334) (0.1350)

∆X −0.0021 −0.0789 −0.0708 −0.1561 −0.1584 −0.1128
(0.0853) (0.1138) (0.0952) (0.1292) (0.1195) (0.1343)

R2=3500. Clusters by locality standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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B Figures

Figure B.1: Euclidean vs Road distances
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Figure B.2: Distance and scores relationship
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Figure B.3: Euclidean Distance Estimators with School-Specific Trends

42



Figure B.4: Road Distance Estimators
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Figure B.5: Matching test Scores Evolution : Discrete I

Figure B.6: Matching test Scores Evolution : Discrete II
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C Appendix: Oaxaca-Blinder and DiD

Here we propose a new identification strategy that mix the advantages of BLinder Oaxaca

decomposition with the DiD specification. The Blinder (1973) and Oaxaca (1973) proce-

dure allows to decompose the difference of a variable y between two groups, δ = E[y|T =

1] − E[y|T = 0], by the difference on observed characteristics x, ∆x, and a difference

that is not related to them ∆0. Here we assume a linear relationship between observed

characteristics x and the outcome y which can be specific to the group T .

y = β0 + β1x+ β2T + β3T · x+ e2

If we impose E[e2|T = 1] = E[e2|T = 0], the difference δ can be expressed on terms of

the difference on x between the two groups and a remainder.

δ = E[y|T = 1]− E[y|T = 0]

= [β0 + β2 + (β1 + β3)E[x|T = 1]]− [β0 + β1E[x|T = 0]]

= β2 + (β1 + β3)E[x|T = 1]− β1E[x|T = 0]

= {β2 + β3E[x|T = 1]}+ {β1(E[x|T = 1]− E[x|T = 0])}

= {∆0}+ {∆x}

We define ∆x = β1(E[x|T = 1] − E[x|T = 0]), as the difference for being part of

T = 1 and not of T = 0 on x. The other term, ∆0 = β2 + β3E[x|T = 1], reflects the

difference on y which is not explained due to the difference on x. In empirical labour

economics, these former term was usually interpreted as the ‘discrimination’ for being part

of T = 1. Under the framework of treatment effects literature, where T is a treatment that

has a heterogeneous effects according to x, so the ‘unexplained’ component is an average

treatment on the treated (Fortin et al., 2011).

We propose a Difference-in-Differences (DiD) analogue of the decomposition, where we

can understand which part of the variation is explained by the impact on an observed

channel x. In the case of our program, we would like to understand which part of the effect

is due to an enhancement of the results of schools via the increase on certain inputs, and

what is due to a general impact that is not related to them. To the best of our knowledge
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this is the first paper that implements this decomposition.

Let’s assume that we can observe two periods, A ∈ {0, 1}. Given it, we define the

average treatment on the treated estimator:

δ = (E[y|T = 1, A = 1]− E[y|T = 0, A = 1])

− (E[y|T = 1, A = 0]− E[y|T = 0, A = 0])

This is the classical DiD estimator under the usual parallel trends assumption. It could be

retrived by using the traditional specification,

y = η0 + η1T + η2A+ δT ·A+ ε

Now, let’s assume that part of this impact is due to a variation on a particular variable

x that is affected by the treatment. Our decomposition is able to decompose the treatment

effect of T on Y between the impact on the observed channel, ∆x and the impact via other

channels, ∆0. It can be implemented using the following linear equation:

y = α0 + α1T + α2A+ α3x+ α4x · T + α5x ·A+ α6T ·A+ α7x · T ·A+ u

Given that

E[y|T = 0, A = 0] = α0 + α3E[x|T = 0, A = 0]

E[y|T = 1, A = 0] = α0 + α1 + (α3 + α4)E[x|T = 1, A = 0]

E[y|T = 0, A = 1] = α0 + α2 + (α3 + α5)E[x|T = 0, A = 1]

E[y|T = 1, A = 1] = α0 + α1 + α2 + α6 + (α3 + α4 + α5 + α7)E[x|T = 1, A = 1]

The impact δ is decomposed between the variation on x that is correlated with the treat-
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ment implementation, ∆x, and the variation that is explained due to other channels, ∆0.

δ = ((α0 + α1 + α2 + α6 + (α3 + α4 + α5 + α7)E[x|T = 1, A = 1])

− (α0 + α2 + (α3 + α5)E[x|T = 1, A = 1]))

− ((α0 + α1 + (α3 + α4)E[x|T = 1, A = 0])− (α0 + α3E[x|T = 0, A = 0]))

δ = α6 + (α4 + α5 + α7)E[x|T = 1, A = 1]− α5E[x|T = 0, A = 1])− α4E[x|T = 1, A = 0]

+ α3[(E[x|T = 1, A = 1]− E[x|T = 0, A = 1])− (E[x|T = 1, A = 0]− E[x|T = 0, A = 0])]

= ∆0 + ∆x

Hence, the impact on Y due to T that can be explained by the impact of T on X is:

∆x = α3[(E[x|T = 1, A = 1]−E[x|T = 0, A = 1])−(E[x|T = 1, A = 0]−E[x|T = 0, A = 0])]

And the remainder variation

∆0 = α6 + (α4 + α5 + α7)E[x|T = 1, A = 1]− α5E[x|T = 0, A = 1]− α4E[x|T = 1, A = 0]
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