• Login
    View Item 
    •   DSpace Home
    • Investigaciones educativas
    • Artículos de revistas
    • View Item
    •   DSpace Home
    • Investigaciones educativas
    • Artículos de revistas
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multiple imputation using chained equations for missing data in TIMSS: a case study

    Thumbnail
    View/Open
    Multiple imputation using chained equations for missing data in TIMSS a case study.pdf (2.207Mb)
    Date
    2013
    Author
    Smaali Bouhlila, Donia
    Sellaouti, Fethi
    Metadata
    Show full item record
    Abstract
    In this paper, we document a study that involved applying a multiple imputation technique with chained equations to data drawn from the 2007 iteration of the TIMSS database. More precisely, we imputed missing variables contained in the student background datafile for Tunisia (one of the TIMSS 2007 participating countries), by using Van Buuren, Boshuizen, and Knook’s (SM 18:681-694,1999) chained equations approach. We imputed the data in a way that was congenial with the analysis model. We also carried out different diagnostics in order to determine if the imputations were reasonable. Our analysis of multiply imputed data confirmed that the power of multiple imputation lies in obtaining smaller standard errors and narrower confidence intervals in addition to allowing one to work with the entire dataset.
    URI
    https://hdl.handle.net/20.500.12799/1778
    Collections
    • Artículos de revistas

    Directiva para la Gestión del Repositorio Institucional del MINEDU

    Ministerio de Educación del Perú
    Contact Us | Send Feedback
    Indexado por:







     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Directiva para la Gestión del Repositorio Institucional del MINEDU

    Ministerio de Educación del Perú
    Contact Us | Send Feedback
    Indexado por: