Show simple item record

dc.contributor.authorSmaali Bouhlila, Donia
dc.contributor.authorSellaouti, Fethi
dc.date.accessioned2013-09-30T19:58:13Z
dc.date.available2013-09-30T19:58:13Z
dc.date.issued2013
dc.identifier.issn2196-0739
dc.identifier.urihttps://hdl.handle.net/20.500.12799/1778
dc.descriptionEn: Large-scale Assessments in Education ,1es_ES
dc.description.abstractIn this paper, we document a study that involved applying a multiple imputation technique with chained equations to data drawn from the 2007 iteration of the TIMSS database. More precisely, we imputed missing variables contained in the student background datafile for Tunisia (one of the TIMSS 2007 participating countries), by using Van Buuren, Boshuizen, and Knook’s (SM 18:681-694,1999) chained equations approach. We imputed the data in a way that was congenial with the analysis model. We also carried out different diagnostics in order to determine if the imputations were reasonable. Our analysis of multiply imputed data confirmed that the power of multiple imputation lies in obtaining smaller standard errors and narrower confidence intervals in addition to allowing one to work with the entire dataset.es_ES
dc.language.isoenes_ES
dc.publisherSpringeres_ES
dc.subjectEvaluación de la educaciónes_ES
dc.subjectAnálisis de datoses_ES
dc.subjectBase de datoses_ES
dc.subjectEvaluación TIMSSes_ES
dc.titleMultiple imputation using chained equations for missing data in TIMSS: a case studyes_ES
dc.typeArticlees_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record